STM32CubeF7/Projects/STM32F769I_EVAL/Applications/FatFs/FatFs_MultiDrives/Src/main.c

355 lines
12 KiB
C

/**
******************************************************************************
* @file FatFs/FatFs_MultiDrives/Src/main.c
* @author MCD Application Team
* @brief Main program body
* This sample code shows how to use FatFs with multi drives.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
FATFS RAMFatFs, SDFatFs; /* File system objects logical drives */
FIL RAMFile, SDFile; /* File objects */
char RAMpath[4], SDpath[4]; /* RAM disk and SD card logical drives paths */
uint8_t workBuffer[2*_MAX_SS];
/* Private function prototypes -----------------------------------------------*/
static void MPU_Config(void);
static void SystemClock_Config(void);
static void Error_Handler(void);
static void CPU_CACHE_Enable(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
FRESULT res1, res2; /* FatFs function common result codes */
uint32_t byteswritten1, byteswritten2; /* File write counts */
uint32_t bytesread1, bytesread2; /* File read counts */
uint8_t wtext[] = "This is STM32 working with FatFs"; /* File write buffer */
uint8_t rtext1[100], rtext2[100]; /* File read buffers */
/* Configure the MPU attributes */
MPU_Config();
/* Enable the CPU Cache */
CPU_CACHE_Enable();
/* STM32F7xx HAL library initialization:
- Configure the Flash ART accelerator on ITCM interface
- Configure the Systick to generate an interrupt each 1 msec
- Set NVIC Group Priority to 4
- Global MSP (MCU Support Package) initialization
*/
HAL_Init();
/* Configure the system clock to 216 MHz */
SystemClock_Config();
/* Configure LED1 and LED3 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED3);
/*##-1- Link the disk I/O drivers ##########################################*/
if((FATFS_LinkDriver(&SDRAMDISK_Driver, RAMpath) == 0) && (FATFS_LinkDriver(&SD_Driver, SDpath) == 0))
{
/*##-2- Register the file system object to the FatFs module ##############*/
res1 = f_mount(&RAMFatFs, (TCHAR const*)RAMpath, 0);
res2 = f_mount(&SDFatFs, (TCHAR const*)SDpath, 0);
if((res1 != FR_OK) || (res2 != FR_OK))
{
/* FatFs Initialization Error */
Error_Handler();
}
else
{
/*##-3- Create a FAT file system (format) on the logical drives ########*/
/* WARNING: Formatting the uSD card will delete all content on the device */
res1 = f_mkfs((TCHAR const*)RAMpath, FM_ANY, 0, workBuffer, sizeof(workBuffer));
res2 = f_mkfs((TCHAR const*)SDpath, FM_ANY, 0, workBuffer, sizeof(workBuffer));
if((res1 != FR_OK) || (res2 != FR_OK))
{
/* FatFs Format Error */
Error_Handler();
}
else
{
/*##-4- Create and Open new text file objects with write access ######*/
res1 = f_open(&RAMFile, "0:STM32.TXT", FA_CREATE_ALWAYS | FA_WRITE);
res2 = f_open(&SDFile, "1:STM32.TXT", FA_CREATE_ALWAYS | FA_WRITE);
if((res1 != FR_OK) || (res2 != FR_OK))
{
/* 'STM32.TXT' file Open for write Error */
Error_Handler();
}
else
{
/*##-5- Write data to the text files ###############################*/
res1 = f_write(&RAMFile, wtext, sizeof(wtext), (void *)&byteswritten1);
res2 = f_write(&SDFile, wtext, sizeof(wtext), (void *)&byteswritten2);
if((byteswritten1 == 0) || (byteswritten2 == 0) || (res1 != FR_OK) || (res2 != FR_OK))
{
/* 'STM32.TXT' file write Error */
Error_Handler();
}
else
{
/*##-6- Close the open text files ################################*/
f_close(&RAMFile);
f_close(&SDFile);
/*##-7- Open the text files object with read access ##############*/
res1 = f_open(&RAMFile, "0:STM32.TXT", FA_READ);
res2 = f_open(&SDFile, "1:STM32.TXT", FA_READ);
if((res1 != FR_OK) || (res2 != FR_OK))
{
/* 'STM32.TXT' file Open for read Error */
Error_Handler();
}
else
{
/*##-8- Read data from the text files ##########################*/
res1 = f_read(&RAMFile, rtext1, sizeof(rtext1), (UINT*)&bytesread1);
res2 = f_read(&SDFile, rtext2, sizeof(rtext2), (UINT*)&bytesread2);
if((res1 != FR_OK) || (res2 != FR_OK))
{
/* 'STM32.TXT' file Read or EOF Error */
Error_Handler();
}
else
{
/*##-9- Close the open text files ############################*/
f_close(&RAMFile);
f_close(&SDFile);
/*##-10- Compare read data with the expected data ############*/
if((bytesread1 != byteswritten1) || (bytesread2 != byteswritten2))
{
/* Read data is different from the expected data */
Error_Handler();
}
else
{
/* Success of the demo: no error occurrence */
BSP_LED_On(LED1);
}
}
}
}
}
}
}
}
/*##-11- Unlink the disk I/O drivers #######################################*/
FATFS_UnLinkDriver(RAMpath);
FATFS_UnLinkDriver(SDpath);
/* Infinite loop */
while (1)
{
}
}
/**
* @brief System Clock Configuration
* The system Clock is configured as follow :
* System Clock source = PLL (HSE)
* SYSCLK(Hz) = 216000000
* HCLK(Hz) = 216000000
* AHB Prescaler = 1
* APB1 Prescaler = 4
* APB2 Prescaler = 2
* HSE Frequency(Hz) = 25000000
* PLL_M = 25
* PLL_N = 432
* PLL_P = 2
* PLL_Q = 9
* VDD(V) = 3.3
* Main regulator output voltage = Scale1 mode
* Flash Latency(WS) = 7
* @param None
* @retval None
*/
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 25;
RCC_OscInitStruct.PLL.PLLN = 432;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 9;
RCC_OscInitStruct.PLL.PLLR = 7;
ret = HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Activate the OverDrive to reach the 216 MHz Frequency */
ret = HAL_PWREx_EnableOverDrive();
if(ret != HAL_OK)
{
while(1) { ; }
}
/* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7);
if(ret != HAL_OK)
{
while(1) { ; }
}
}
/**
* @brief This function is executed in case of error occurrence.
* @param None
* @retval None
*/
static void Error_Handler(void)
{
/* Turn LED3 on */
BSP_LED_On(LED3);
while(1)
{
}
}
/**
* @brief Configure the MPU attributes
* @param None
* @retval None
*/
static void MPU_Config(void)
{
MPU_Region_InitTypeDef MPU_InitStruct;
/* Disable the MPU */
HAL_MPU_Disable();
/* Configure the MPU as Strongly ordered for not defined regions */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x00;
MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x87;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure the MPU attributes as WT for SDRAM */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xC0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_32MB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure the MPU attributes FMC control registers */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0xA0000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_8KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE;
MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x0;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable the MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/**
* @brief CPU L1-Cache enable.
* @param None
* @retval None
*/
static void CPU_CACHE_Enable(void)
{
/* Enable I-Cache */
SCB_EnableICache();
/* Enable D-Cache */
SCB_EnableDCache();
}