/** ****************************************************************************** * @file FatFs/FatFs_MultiDrives/Src/main.c * @author MCD Application Team * @brief Main program body * This sample code shows how to use FatFs with multi drives. ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ FATFS RAMFatFs, SDFatFs; /* File system objects logical drives */ FIL RAMFile, SDFile; /* File objects */ char RAMpath[4], SDpath[4]; /* RAM disk and SD card logical drives paths */ uint8_t workBuffer[2*_MAX_SS]; /* Private function prototypes -----------------------------------------------*/ static void MPU_Config(void); static void SystemClock_Config(void); static void Error_Handler(void); static void CPU_CACHE_Enable(void); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program * @param None * @retval None */ int main(void) { FRESULT res1, res2; /* FatFs function common result codes */ uint32_t byteswritten1, byteswritten2; /* File write counts */ uint32_t bytesread1, bytesread2; /* File read counts */ uint8_t wtext[] = "This is STM32 working with FatFs"; /* File write buffer */ uint8_t rtext1[100], rtext2[100]; /* File read buffers */ /* Configure the MPU attributes */ MPU_Config(); /* Enable the CPU Cache */ CPU_CACHE_Enable(); /* STM32F7xx HAL library initialization: - Configure the Flash ART accelerator on ITCM interface - Configure the Systick to generate an interrupt each 1 msec - Set NVIC Group Priority to 4 - Global MSP (MCU Support Package) initialization */ HAL_Init(); /* Configure the system clock to 216 MHz */ SystemClock_Config(); /* Configure LED1 and LED3 */ BSP_LED_Init(LED1); BSP_LED_Init(LED3); /*##-1- Link the disk I/O drivers ##########################################*/ if((FATFS_LinkDriver(&SDRAMDISK_Driver, RAMpath) == 0) && (FATFS_LinkDriver(&SD_Driver, SDpath) == 0)) { /*##-2- Register the file system object to the FatFs module ##############*/ res1 = f_mount(&RAMFatFs, (TCHAR const*)RAMpath, 0); res2 = f_mount(&SDFatFs, (TCHAR const*)SDpath, 0); if((res1 != FR_OK) || (res2 != FR_OK)) { /* FatFs Initialization Error */ Error_Handler(); } else { /*##-3- Create a FAT file system (format) on the logical drives ########*/ /* WARNING: Formatting the uSD card will delete all content on the device */ res1 = f_mkfs((TCHAR const*)RAMpath, FM_ANY, 0, workBuffer, sizeof(workBuffer)); res2 = f_mkfs((TCHAR const*)SDpath, FM_ANY, 0, workBuffer, sizeof(workBuffer)); if((res1 != FR_OK) || (res2 != FR_OK)) { /* FatFs Format Error */ Error_Handler(); } else { /*##-4- Create and Open new text file objects with write access ######*/ res1 = f_open(&RAMFile, "0:STM32.TXT", FA_CREATE_ALWAYS | FA_WRITE); res2 = f_open(&SDFile, "1:STM32.TXT", FA_CREATE_ALWAYS | FA_WRITE); if((res1 != FR_OK) || (res2 != FR_OK)) { /* 'STM32.TXT' file Open for write Error */ Error_Handler(); } else { /*##-5- Write data to the text files ###############################*/ res1 = f_write(&RAMFile, wtext, sizeof(wtext), (void *)&byteswritten1); res2 = f_write(&SDFile, wtext, sizeof(wtext), (void *)&byteswritten2); if((byteswritten1 == 0) || (byteswritten2 == 0) || (res1 != FR_OK) || (res2 != FR_OK)) { /* 'STM32.TXT' file write Error */ Error_Handler(); } else { /*##-6- Close the open text files ################################*/ f_close(&RAMFile); f_close(&SDFile); /*##-7- Open the text files object with read access ##############*/ res1 = f_open(&RAMFile, "0:STM32.TXT", FA_READ); res2 = f_open(&SDFile, "1:STM32.TXT", FA_READ); if((res1 != FR_OK) || (res2 != FR_OK)) { /* 'STM32.TXT' file Open for read Error */ Error_Handler(); } else { /*##-8- Read data from the text files ##########################*/ res1 = f_read(&RAMFile, rtext1, sizeof(rtext1), (UINT*)&bytesread1); res2 = f_read(&SDFile, rtext2, sizeof(rtext2), (UINT*)&bytesread2); if((res1 != FR_OK) || (res2 != FR_OK)) { /* 'STM32.TXT' file Read or EOF Error */ Error_Handler(); } else { /*##-9- Close the open text files ############################*/ f_close(&RAMFile); f_close(&SDFile); /*##-10- Compare read data with the expected data ############*/ if((bytesread1 != byteswritten1) || (bytesread2 != byteswritten2)) { /* Read data is different from the expected data */ Error_Handler(); } else { /* Success of the demo: no error occurrence */ BSP_LED_On(LED1); } } } } } } } } /*##-11- Unlink the disk I/O drivers #######################################*/ FATFS_UnLinkDriver(RAMpath); FATFS_UnLinkDriver(SDpath); /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 216000000 * HCLK(Hz) = 216000000 * AHB Prescaler = 1 * APB1 Prescaler = 4 * APB2 Prescaler = 2 * HSE Frequency(Hz) = 25000000 * PLL_M = 25 * PLL_N = 432 * PLL_P = 2 * PLL_Q = 9 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 7 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; HAL_StatusTypeDef ret = HAL_OK; /* Enable HSE Oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 432; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 9; RCC_OscInitStruct.PLL.PLLR = 7; ret = HAL_RCC_OscConfig(&RCC_OscInitStruct); if(ret != HAL_OK) { while(1) { ; } } /* Activate the OverDrive to reach the 216 MHz Frequency */ ret = HAL_PWREx_EnableOverDrive(); if(ret != HAL_OK) { while(1) { ; } } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; ret = HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_7); if(ret != HAL_OK) { while(1) { ; } } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { /* Turn LED3 on */ BSP_LED_On(LED3); while(1) { } } /** * @brief Configure the MPU attributes * @param None * @retval None */ static void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct; /* Disable the MPU */ HAL_MPU_Disable(); /* Configure the MPU as Strongly ordered for not defined regions */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x00; MPU_InitStruct.Size = MPU_REGION_SIZE_4GB; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x87; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Configure the MPU attributes as WT for SDRAM */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0xC0000000; MPU_InitStruct.Size = MPU_REGION_SIZE_32MB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Configure the MPU attributes FMC control registers */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0xA0000000; MPU_InitStruct.Size = MPU_REGION_SIZE_8KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enable the MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t* file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @brief CPU L1-Cache enable. * @param None * @retval None */ static void CPU_CACHE_Enable(void) { /* Enable I-Cache */ SCB_EnableICache(); /* Enable D-Cache */ SCB_EnableDCache(); }