openface/demos/compare.py

111 lines
3.9 KiB
Python
Raw Normal View History

2015-09-30 06:07:12 +08:00
#!/usr/bin/env python2
#
# Example to compare the faces in two images.
# Brandon Amos
# 2015/09/29
#
# Copyright 2015 Carnegie Mellon University
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
start = time.time()
import argparse
import cv2
import itertools
2015-09-30 06:07:12 +08:00
import os
import numpy as np
np.set_printoptions(precision=2)
import sys
fileDir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.join(fileDir, ".."))
import facenet
import facenet.helper
from facenet.data import iterImgs
modelDir = os.path.join(fileDir, '..', 'models')
dlibModelDir = os.path.join(modelDir, 'dlib')
facenetModelDir = os.path.join(modelDir, 'facenet')
parser = argparse.ArgumentParser()
parser.add_argument('imgs', type=str, nargs='+', help="Input images.")
2015-09-30 06:07:12 +08:00
parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir, "mean.csv"))
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat"))
parser.add_argument('--dlibRoot', type=str,
2015-10-04 14:08:53 +08:00
default=os.path.expanduser("~/src/dlib-18.16/python_examples"),
2015-09-30 06:07:12 +08:00
help="dlib directory with the dlib.so Python library.")
parser.add_argument('--networkModel', type=str, help="Path to Torch network model.",
default=os.path.join(facenetModelDir, 'nn4.v1.t7'))
parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96)
parser.add_argument('--cuda', type=bool, default=False)
parser.add_argument('--verbose', type=bool, default=False)
2015-09-30 06:07:12 +08:00
args = parser.parse_args()
sys.path.append(args.dlibRoot)
import dlib
from facenet.alignment import NaiveDlib # Depends on dlib.
if args.verbose:
print("Argument parsing and loading libraries took {} seconds.".format(time.time()-start))
2015-09-30 06:07:12 +08:00
start = time.time()
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
net = facenet.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
if args.verbose:
print("Loading the dlib and FaceNet models took {} seconds.".format(time.time()-start))
2015-09-30 06:07:12 +08:00
def getRep(imgPath):
if args.verbose:
print("Processing {}.".format(imgPath))
2015-09-30 06:07:12 +08:00
img = cv2.imread(imgPath)
if img is None:
raise Exception("Unable to load image: {}".format(imgPath))
if args.verbose:
print(" + Original size: {}".format(img.shape))
2015-09-30 06:07:12 +08:00
start = time.time()
bb = align.getLargestFaceBoundingBox(img)
if bb is None:
raise Exception("Unable to find a face: {}".format(imgPath))
if args.verbose:
print(" + Face detection took {} seconds.".format(time.time()-start))
2015-09-30 06:07:12 +08:00
start = time.time()
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
if alignedFace is None:
raise Exception("Unable to align image: {}".format(imgPath))
if args.verbose:
print(" + Face alignment took {} seconds.".format(time.time()-start))
2015-09-30 06:07:12 +08:00
start = time.time()
rep = net.forwardImage(alignedFace)
if args.verbose:
print(" + FaceNet forward pass took {} seconds.".format(time.time()-start))
print("Representation:")
print(rep)
print("-----\n")
2015-09-30 06:07:12 +08:00
return rep
for (img1, img2) in itertools.combinations(args.imgs, 2):
d = getRep(img1) - getRep(img2)
print("Comparing {} with {}.".format(img1, img2))
print(" + Squared l2 distance between representations: {}".format(np.dot(d, d)))