#!/usr/bin/env python2 # # Example to compare the faces in two images. # Brandon Amos # 2015/09/29 # # Copyright 2015 Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time start = time.time() import argparse import cv2 import itertools import os import numpy as np np.set_printoptions(precision=2) import sys fileDir = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(fileDir, "..")) import facenet import facenet.helper from facenet.data import iterImgs modelDir = os.path.join(fileDir, '..', 'models') dlibModelDir = os.path.join(modelDir, 'dlib') facenetModelDir = os.path.join(modelDir, 'facenet') parser = argparse.ArgumentParser() parser.add_argument('imgs', type=str, nargs='+', help="Input images.") parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "mean.csv")) parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.", default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat")) parser.add_argument('--dlibRoot', type=str, default=os.path.expanduser("~/src/dlib-18.16/python_examples"), help="dlib directory with the dlib.so Python library.") parser.add_argument('--networkModel', type=str, help="Path to Torch network model.", default=os.path.join(facenetModelDir, 'nn4.v1.t7')) parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96) parser.add_argument('--cuda', type=bool, default=False) parser.add_argument('--verbose', type=bool, default=False) args = parser.parse_args() sys.path.append(args.dlibRoot) import dlib from facenet.alignment import NaiveDlib # Depends on dlib. if args.verbose: print("Argument parsing and loading libraries took {} seconds.".format(time.time()-start)) start = time.time() align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor) net = facenet.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda) if args.verbose: print("Loading the dlib and FaceNet models took {} seconds.".format(time.time()-start)) def getRep(imgPath): if args.verbose: print("Processing {}.".format(imgPath)) img = cv2.imread(imgPath) if img is None: raise Exception("Unable to load image: {}".format(imgPath)) if args.verbose: print(" + Original size: {}".format(img.shape)) start = time.time() bb = align.getLargestFaceBoundingBox(img) if bb is None: raise Exception("Unable to find a face: {}".format(imgPath)) if args.verbose: print(" + Face detection took {} seconds.".format(time.time()-start)) start = time.time() alignedFace = align.alignImg("affine", args.imgDim, img, bb) if alignedFace is None: raise Exception("Unable to align image: {}".format(imgPath)) if args.verbose: print(" + Face alignment took {} seconds.".format(time.time()-start)) start = time.time() rep = net.forwardImage(alignedFace) if args.verbose: print(" + FaceNet forward pass took {} seconds.".format(time.time()-start)) print("Representation:") print(rep) print("-----\n") return rep for (img1, img2) in itertools.combinations(args.imgs, 2): d = getRep(img1) - getRep(img2) print("Comparing {} with {}.".format(img1, img2)) print(" + Squared l2 distance between representations: {}".format(np.dot(d, d)))