105 lines
3.7 KiB
Python
105 lines
3.7 KiB
Python
|
#!/usr/bin/env python2
|
||
|
#
|
||
|
# Example to compare the faces in two images.
|
||
|
# Brandon Amos
|
||
|
# 2015/09/29
|
||
|
#
|
||
|
# Copyright 2015 Carnegie Mellon University
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import time
|
||
|
|
||
|
start = time.time()
|
||
|
import argparse
|
||
|
import cv2
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
np.set_printoptions(precision=2)
|
||
|
|
||
|
import sys
|
||
|
fileDir = os.path.dirname(os.path.realpath(__file__))
|
||
|
sys.path.append(os.path.join(fileDir, ".."))
|
||
|
|
||
|
import facenet
|
||
|
import facenet.helper
|
||
|
from facenet.data import iterImgs
|
||
|
|
||
|
modelDir = os.path.join(fileDir, '..', 'models')
|
||
|
dlibModelDir = os.path.join(modelDir, 'dlib')
|
||
|
facenetModelDir = os.path.join(modelDir, 'facenet')
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
|
||
|
parser.add_argument('img1', type=str, help="Input image 1.")
|
||
|
parser.add_argument('img2', type=str, help="Input image 2.")
|
||
|
parser.add_argument('--dlibFaceMean', type=str, help="Path to dlib's face predictor.",
|
||
|
default=os.path.join(dlibModelDir, "mean.csv"))
|
||
|
parser.add_argument('--dlibFacePredictor', type=str, help="Path to dlib's face predictor.",
|
||
|
default=os.path.join(dlibModelDir, "shape_predictor_68_face_landmarks.dat"))
|
||
|
parser.add_argument('--dlibRoot', type=str,
|
||
|
default=os.path.expanduser("~/src/dlib-18.15/python_examples"),
|
||
|
help="dlib directory with the dlib.so Python library.")
|
||
|
parser.add_argument('--networkModel', type=str, help="Path to Torch network model.",
|
||
|
default=os.path.join(facenetModelDir, 'nn4.v1.t7'))
|
||
|
parser.add_argument('--imgDim', type=int, help="Default image dimension.", default=96)
|
||
|
parser.add_argument('--cuda', type=bool, default=False)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
sys.path.append(args.dlibRoot)
|
||
|
import dlib
|
||
|
|
||
|
from facenet.alignment import NaiveDlib # Depends on dlib.
|
||
|
print("Argument parsing and loading libraries took {} seconds.".format(time.time()-start))
|
||
|
|
||
|
start = time.time()
|
||
|
align = NaiveDlib(args.dlibFaceMean, args.dlibFacePredictor)
|
||
|
net = facenet.TorchWrap(args.networkModel, imgDim=args.imgDim, cuda=args.cuda)
|
||
|
print("Loading the dlib and FaceNet models took {} seconds.".format(time.time()-start))
|
||
|
|
||
|
def getRep(imgPath):
|
||
|
global i
|
||
|
print("Processing {}.".format(imgPath))
|
||
|
img = cv2.imread(imgPath)
|
||
|
if img is None:
|
||
|
raise Exception("Unable to load image: {}".format(imgPath))
|
||
|
print(" + Original size: {}".format(img.shape))
|
||
|
|
||
|
start = time.time()
|
||
|
bb = align.getLargestFaceBoundingBox(img)
|
||
|
if bb is None:
|
||
|
raise Exception("Unable to find a face: {}".format(imgPath))
|
||
|
print(" + Face detection took {} seconds.".format(time.time()-start))
|
||
|
|
||
|
start = time.time()
|
||
|
alignedFace = align.alignImg("affine", args.imgDim, img, bb)
|
||
|
if alignedFace is None:
|
||
|
raise Exception("Unable to align image: {}".format(imgPath))
|
||
|
print(" + Face alignment took {} seconds.".format(time.time()-start))
|
||
|
|
||
|
start = time.time()
|
||
|
t = '/tmp/facenet-compare.png'
|
||
|
cv2.imwrite(t, alignedFace)
|
||
|
rep = np.array(net.forward(t))
|
||
|
os.remove(t)
|
||
|
print(" + FaceNet forward pass took {} seconds.".format(time.time()-start))
|
||
|
print("Representation:")
|
||
|
print(rep)
|
||
|
print("-----\n")
|
||
|
return rep
|
||
|
|
||
|
d = getRep(args.img1) - getRep(args.img2)
|
||
|
print("Squared l2 distance between representations: {}".format(np.dot(d, d)))
|