3.8 KiB
Dataset preparation
If you want to reproduce the results in the paper for benchmark evaluation and training, you will need to setup dataset.
COCO
-
Download the images (2017 Train, 2017 Val, 2017 Test) from coco website.
-
Download annotation files (2017 train/val and test image info) from coco website.
-
Place the data (or create symlinks) to make the data folder like:
${CenterNet_ROOT} |-- data `-- |-- coco `-- |-- annotations | |-- instances_train2017.json | |-- instances_val2017.json | |-- person_keypoints_train2017.json | |-- person_keypoints_val2017.json | |-- image_info_test-dev2017.json |---|-- train2017 |---|-- val2017 `---|-- test2017
-
[Optional] If you want to train ExtremeNet, generate extreme point annotation from segmentation:
cd $CenterNet_ROOT/tools/ python gen_coco_extreme_points.py
It generates
instances_extreme_train2017.json
andinstances_extreme_val2017.json
indata/coco/annotations/
.
Pascal VOC
-
Run
cd $CenterNet_ROOT/tools/ bash get_pascal_voc.sh
-
The above script includes:
- Download, unzip, and move Pascal VOC images from the VOC website.
- Download Pascal VOC annotation in COCO format (from Detectron).
- Combine train/val 2007/2012 annotation files into a single json.
-
Move the created
voc
folder todata
(or create symlinks) to make the data folder like:${CenterNet_ROOT} |-- data `-- |-- voc `-- |-- annotations | |-- pascal_trainval0712.json | |-- pascal_test2017.json |-- images | |-- 000001.jpg | ...... `-- VOCdevkit
The
VOCdevkit
folder is needed to run the evaluation script from faster rcnn.
KITTI
-
Download images, annotations, and calibrations from KITTI website and unzip.
-
Download the train-val split of 3DOP and SubCNN and place the data as below
${CenterNet_ROOT} |-- data `-- |-- kitti `-- |-- training | |-- image_2 | |-- label_2 | |-- calib |-- ImageSets_3dop | |-- test.txt | |-- train.txt | |-- val.txt | |-- trainval.txt `-- ImageSets_subcnn |-- test.txt |-- train.txt |-- val.txt |-- trainval.txt
-
Run
python convert_kitti_to_coco.py
intools
to convert the annotation into COCO format. You can setDEBUG=True
inline 5
to visualize the annotation. -
Link image folder
cd ${CenterNet_ROOT}/data/kitti/ mkdir images ln -s training/image_2 images/trainval
-
The data structure should look like:
${CenterNet_ROOT} |-- data `-- |-- kitti `-- |-- annotations | |-- kitti_3dop_train.json | |-- kitti_3dop_val.json | |-- kitti_subcnn_train.json | |-- kitti_subcnn_val.json `-- images |-- trainval |-- test