403 lines
11 KiB
C
403 lines
11 KiB
C
/*
|
|
* Copyright (c) 2014-2015 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief ARC Timer0 device driver
|
|
*
|
|
* This module implements a kernel device driver for the ARCv2 processor Timer0
|
|
* and provides the standard "system clock driver" interfaces.
|
|
*
|
|
* If the TICKLESS_IDLE kernel configuration option is enabled, the timer may
|
|
* be programmed to wake the system in N >= TICKLESS_IDLE_THRESH ticks. The
|
|
* kernel invokes _timer_idle_enter() to program the up counter to trigger an
|
|
* interrupt in N ticks. When the timer expires (or when another interrupt is
|
|
* detected), the kernel's interrupt stub invokes _timer_idle_exit() to leave
|
|
* the tickless idle state.
|
|
*
|
|
* @internal
|
|
* The ARCv2 processor timer provides a 32-bit incrementing, wrap-to-zero
|
|
* counter.
|
|
*
|
|
* Factors that increase the driver's tickless idle complexity:
|
|
* 1. As the Timer0 up-counter is a 32-bit value, the number of ticks for which
|
|
* the system can be in tickless idle is limited to 'max_system_ticks'.
|
|
*
|
|
* 2. The act of entering tickless idle may potentially straddle a tick
|
|
* boundary. This can be detected in _timer_idle_enter() after Timer0 is
|
|
* programmed with the new limit and acted upon in _timer_idle_exit().
|
|
*
|
|
* 3. Tickless idle may be prematurely aborted due to a straddled tick. See
|
|
* previous factor.
|
|
*
|
|
* 4. Tickless idle may end naturally. This is detected and handled in
|
|
* _timer_idle_exit().
|
|
*
|
|
* 5. Tickless idle may be prematurely aborted due to a non-timer interrupt.
|
|
* If this occurs, Timer0 is reprogrammed to trigger at the next tick.
|
|
* @endinternal
|
|
*/
|
|
|
|
#include <nanokernel.h>
|
|
#include <arch/cpu.h>
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
#include <misc/__assert.h>
|
|
#include <arch/arc/v2/aux_regs.h>
|
|
#include <sys_clock.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <stdbool.h>
|
|
#include <misc/__assert.h>
|
|
|
|
/*
|
|
* The file(s) arch/arc/soc/<soc>/soc.h must provide a definition for the
|
|
* following constant:
|
|
*
|
|
* CONFIG_ARCV2_TIMER0_CLOCK_FREQ
|
|
*
|
|
* This is the ARC CPU input clock frequency.
|
|
* note: This implementation assumes Timer0 is present. Be sure
|
|
* to build the ARC CPU with Timer0.
|
|
*/
|
|
|
|
#include <board.h>
|
|
|
|
#define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */
|
|
#define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */
|
|
#define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */
|
|
#define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */
|
|
|
|
/* running total of timer count */
|
|
static uint32_t __noinit cycles_per_tick;
|
|
static uint32_t accumulated_cycle_count;
|
|
|
|
#ifdef CONFIG_TICKLESS_IDLE
|
|
static uint32_t __noinit max_system_ticks;
|
|
static uint32_t __noinit programmed_limit;
|
|
static uint32_t __noinit programmed_ticks;
|
|
static bool straddled_tick_on_idle_enter = false;
|
|
extern int32_t _sys_idle_elapsed_ticks;
|
|
#endif
|
|
|
|
/**
|
|
*
|
|
* @brief Get contents of Timer0 count register
|
|
*
|
|
* @return Current Timer0 count
|
|
*/
|
|
static ALWAYS_INLINE uint32_t timer0_count_register_get(void)
|
|
{
|
|
return _arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Set Timer0 count register to the specified value
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static ALWAYS_INLINE void timer0_count_register_set(uint32_t value)
|
|
{
|
|
_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Get contents of Timer0 control register
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static ALWAYS_INLINE uint32_t timer0_control_register_get(void)
|
|
{
|
|
return _arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Set Timer0 control register to the specified value
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static ALWAYS_INLINE void timer0_control_register_set(uint32_t value)
|
|
{
|
|
_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Set Timer0 limit register to the specified value
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count)
|
|
{
|
|
_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count);
|
|
}
|
|
|
|
#ifdef CONFIG_TICKLESS_IDLE
|
|
static ALWAYS_INLINE void update_accumulated_count(void)
|
|
{
|
|
accumulated_cycle_count += (_sys_idle_elapsed_ticks * cycles_per_tick);
|
|
}
|
|
#else /* CONFIG_TICKLESS_IDLE */
|
|
static ALWAYS_INLINE void update_accumulated_count(void)
|
|
{
|
|
accumulated_cycle_count += cycles_per_tick;
|
|
}
|
|
#endif /* CONFIG_TICKLESS_IDLE */
|
|
|
|
/**
|
|
*
|
|
* @brief System clock periodic tick handler
|
|
*
|
|
* This routine handles the system clock periodic tick interrupt. It always
|
|
* announces one tick.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void _timer_int_handler(void *unused)
|
|
{
|
|
ARG_UNUSED(unused);
|
|
|
|
/* clear the interrupt by writing 0 to IP bit of the control register */
|
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
|
|
|
|
#if defined(CONFIG_TICKLESS_IDLE)
|
|
timer0_limit_register_set(cycles_per_tick - 1);
|
|
__ASSERT_EVAL({},
|
|
uint32_t timer_count = timer0_count_register_get(),
|
|
timer_count <= (cycles_per_tick - 1),
|
|
"timer_count: %d, limit %d\n", timer_count, cycles_per_tick - 1);
|
|
|
|
_sys_idle_elapsed_ticks = 1;
|
|
#endif
|
|
|
|
update_accumulated_count();
|
|
_sys_clock_tick_announce();
|
|
}
|
|
|
|
#if defined(CONFIG_TICKLESS_IDLE)
|
|
/*
|
|
* @brief initialize the tickless idle feature
|
|
*
|
|
* This routine initializes the tickless idle feature.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
static void tickless_idle_init(void)
|
|
{
|
|
/* calculate the max number of ticks with this 32-bit H/W counter */
|
|
max_system_ticks = 0xffffffff / cycles_per_tick;
|
|
}
|
|
|
|
/*
|
|
* @brief Place the system timer into idle state
|
|
*
|
|
* Re-program the timer to enter into the idle state for either the given
|
|
* number of ticks or the maximum number of ticks that can be programmed
|
|
* into hardware.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
|
|
void _timer_idle_enter(int32_t ticks)
|
|
{
|
|
uint32_t status;
|
|
|
|
if ((ticks == TICKS_UNLIMITED) || (ticks > max_system_ticks)) {
|
|
/*
|
|
* The number of cycles until the timer must fire next might not fit
|
|
* in the 32-bit counter register. To work around this, program
|
|
* the counter to fire in the maximum number of ticks.
|
|
*/
|
|
ticks = max_system_ticks;
|
|
}
|
|
|
|
programmed_ticks = ticks;
|
|
programmed_limit = (programmed_ticks * cycles_per_tick) - 1;
|
|
|
|
timer0_limit_register_set(programmed_limit);
|
|
|
|
/*
|
|
* If Timer0's IP bit is set, then it is known that we have straddled
|
|
* a tick boundary while entering tickless idle.
|
|
*/
|
|
|
|
status = timer0_control_register_get();
|
|
if (status & _ARC_V2_TMR_CTRL_IP) {
|
|
straddled_tick_on_idle_enter = true;
|
|
}
|
|
__ASSERT_EVAL({},
|
|
uint32_t timer_count = timer0_count_register_get(),
|
|
timer_count <= programmed_limit,
|
|
"timer_count: %d, limit %d\n", timer_count, programmed_limit);
|
|
}
|
|
|
|
/*
|
|
* @brief handling of tickless idle when interrupted
|
|
*
|
|
* The routine, called by _SysPowerSaveIdleExit, is responsible for taking the
|
|
* timer out of idle mode and generating an interrupt at the next tick
|
|
* interval. It is expected that interrupts have been disabled.
|
|
*
|
|
* RETURNS: N/A
|
|
*/
|
|
|
|
void _timer_idle_exit(void)
|
|
{
|
|
if (straddled_tick_on_idle_enter) {
|
|
/* Aborting the tickless idle due to a straddled tick. */
|
|
straddled_tick_on_idle_enter = false;
|
|
__ASSERT_EVAL({},
|
|
uint32_t timer_count = timer0_count_register_get(),
|
|
timer_count <= programmed_limit,
|
|
"timer_count: %d, limit %d\n", timer_count, programmed_limit);
|
|
return;
|
|
}
|
|
|
|
uint32_t control;
|
|
uint32_t current_count;
|
|
|
|
current_count = timer0_count_register_get();
|
|
control = timer0_control_register_get();
|
|
if (control & _ARC_V2_TMR_CTRL_IP) {
|
|
/*
|
|
* The timer has expired. The handler _timer_int_handler() is
|
|
* guaranteed to execute. Track the number of elapsed ticks. The
|
|
* handler _timer_int_handler() will account for the final tick.
|
|
*/
|
|
|
|
_sys_idle_elapsed_ticks = programmed_ticks - 1;
|
|
update_accumulated_count();
|
|
_sys_clock_tick_announce();
|
|
|
|
__ASSERT_EVAL({},
|
|
uint32_t timer_count = timer0_count_register_get(),
|
|
timer_count <= programmed_limit,
|
|
"timer_count: %d, limit %d\n", timer_count, programmed_limit);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A non-timer interrupt occurred. Announce any
|
|
* ticks that have elapsed during the tickless idle.
|
|
*/
|
|
_sys_idle_elapsed_ticks = current_count / cycles_per_tick;
|
|
if (_sys_idle_elapsed_ticks > 0) {
|
|
update_accumulated_count();
|
|
_sys_clock_tick_announce();
|
|
}
|
|
|
|
/*
|
|
* Ensure the timer will expire at the end of the next tick in case
|
|
* the ISR makes any tasks and/or fibers ready to run.
|
|
*/
|
|
timer0_limit_register_set(cycles_per_tick - 1);
|
|
timer0_count_register_set(current_count % cycles_per_tick);
|
|
|
|
__ASSERT_EVAL({},
|
|
uint32_t timer_count = timer0_count_register_get(),
|
|
timer_count <= (cycles_per_tick - 1),
|
|
"timer_count: %d, limit %d\n", timer_count, cycles_per_tick-1);
|
|
}
|
|
#else
|
|
static void tickless_idle_init(void) {}
|
|
#endif /* CONFIG_TICKLESS_IDLE */
|
|
|
|
|
|
/**
|
|
*
|
|
* @brief Initialize and enable the system clock
|
|
*
|
|
* This routine is used to program the ARCv2 timer to deliver interrupts at the
|
|
* rate specified via the 'sys_clock_us_per_tick' global variable.
|
|
*
|
|
* @return 0
|
|
*/
|
|
int _sys_clock_driver_init(struct device *device)
|
|
{
|
|
ARG_UNUSED(device);
|
|
|
|
/* ensure that the timer will not generate interrupts */
|
|
timer0_control_register_set(0);
|
|
timer0_count_register_set(0);
|
|
|
|
cycles_per_tick = sys_clock_hw_cycles_per_tick;
|
|
|
|
IRQ_CONNECT(IRQ_TIMER0, 0, _timer_int_handler, NULL, IRQ_ZERO_LATENCY);
|
|
|
|
/*
|
|
* Set the reload value to achieve the configured tick rate, enable the
|
|
* counter and interrupt generation.
|
|
*/
|
|
|
|
tickless_idle_init();
|
|
|
|
timer0_limit_register_set(cycles_per_tick - 1);
|
|
timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE);
|
|
|
|
/* everything has been configured: safe to enable the interrupt */
|
|
|
|
irq_enable(IRQ_TIMER0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Read the platform's timer hardware
|
|
*
|
|
* This routine returns the current time in terms of timer hardware clock
|
|
* cycles.
|
|
*
|
|
* @return up counter of elapsed clock cycles
|
|
*/
|
|
uint32_t sys_cycle_get_32(void)
|
|
{
|
|
return (accumulated_cycle_count + timer0_count_register_get());
|
|
}
|
|
|
|
#if defined(CONFIG_SYSTEM_CLOCK_DISABLE)
|
|
/**
|
|
*
|
|
* @brief Stop announcing ticks into the kernel
|
|
*
|
|
* This routine disables timer interrupt generation and delivery.
|
|
* Note that the timer's counting cannot be stopped by software.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
void sys_clock_disable(void)
|
|
{
|
|
unsigned int key; /* interrupt lock level */
|
|
uint32_t control; /* timer control register value */
|
|
|
|
key = irq_lock();
|
|
|
|
/* disable interrupt generation */
|
|
|
|
control = timer0_control_register_get();
|
|
timer0_control_register_set(control & ~_ARC_V2_TMR_CTRL_IE);
|
|
|
|
irq_unlock(key);
|
|
|
|
/* disable interrupt in the interrupt controller */
|
|
|
|
irq_disable(CONFIG_ARCV2_TIMER0_INT_LVL);
|
|
}
|
|
#endif /* CONFIG_SYSTEM_CLOCK_DISABLE */
|