116 lines
2.9 KiB
C
116 lines
2.9 KiB
C
/*
|
|
* Copyright (c) 2017 Jean-Paul Etienne <fractalclone@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <arch/cpu.h>
|
|
#include <device.h>
|
|
#include <system_timer.h>
|
|
#include <board.h>
|
|
|
|
typedef struct {
|
|
u32_t val_low;
|
|
u32_t val_high;
|
|
} riscv_machine_timer_t;
|
|
|
|
static volatile riscv_machine_timer_t *mtime =
|
|
(riscv_machine_timer_t *)RISCV_MTIME_BASE;
|
|
static volatile riscv_machine_timer_t *mtimecmp =
|
|
(riscv_machine_timer_t *)RISCV_MTIMECMP_BASE;
|
|
|
|
/*
|
|
* The RISCV machine-mode timer is a one shot timer that needs to be rearm upon
|
|
* every interrupt. Timer clock is a 64-bits ART.
|
|
* To arm timer, we need to read the RTC value and update the
|
|
* timer compare register by the RTC value + time interval we want timer
|
|
* to interrupt.
|
|
*/
|
|
static ALWAYS_INLINE void riscv_machine_rearm_timer(void)
|
|
{
|
|
u64_t rtc;
|
|
|
|
/*
|
|
* Disable timer interrupt while rearming the timer
|
|
* to avoid generation of interrupts while setting
|
|
* the mtimecmp->val_low register.
|
|
*/
|
|
irq_disable(RISCV_MACHINE_TIMER_IRQ);
|
|
|
|
/*
|
|
* Following machine-mode timer implementation in QEMU, the actual
|
|
* RTC read is performed when reading low timer value register.
|
|
* Reading high timer value just reads the most significant 32-bits
|
|
* of a cache value, obtained from a previous read to the low
|
|
* timer value register. Hence, always read timer->val_low first.
|
|
* This also works for other implementations.
|
|
*/
|
|
rtc = mtime->val_low;
|
|
rtc |= ((u64_t)mtime->val_high << 32);
|
|
|
|
/*
|
|
* Rearm timer to generate an interrupt after
|
|
* sys_clock_hw_cycles_per_tick
|
|
*/
|
|
rtc += sys_clock_hw_cycles_per_tick;
|
|
mtimecmp->val_low = (u32_t)(rtc & 0xffffffff);
|
|
mtimecmp->val_high = (u32_t)((rtc >> 32) & 0xffffffff);
|
|
|
|
/* Enable timer interrupt */
|
|
irq_enable(RISCV_MACHINE_TIMER_IRQ);
|
|
}
|
|
|
|
static void riscv_machine_timer_irq_handler(void *unused)
|
|
{
|
|
ARG_UNUSED(unused);
|
|
#ifdef CONFIG_EXECUTION_BENCHMARKING
|
|
extern void read_timer_start_of_tick_handler(void);
|
|
read_timer_start_of_tick_handler();
|
|
#endif
|
|
|
|
_sys_clock_tick_announce();
|
|
|
|
/* Rearm timer */
|
|
riscv_machine_rearm_timer();
|
|
|
|
#ifdef CONFIG_EXECUTION_BENCHMARKING
|
|
extern void read_timer_end_of_tick_handler(void);
|
|
read_timer_end_of_tick_handler();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_TICKLESS_IDLE
|
|
#error "Tickless idle not yet implemented for riscv-machine timer"
|
|
#endif
|
|
|
|
int _sys_clock_driver_init(struct device *device)
|
|
{
|
|
ARG_UNUSED(device);
|
|
|
|
IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0,
|
|
riscv_machine_timer_irq_handler, NULL, 0);
|
|
|
|
/* Initialize timer, just call riscv_machine_rearm_timer */
|
|
riscv_machine_rearm_timer();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @brief Read the platform's timer hardware
|
|
*
|
|
* This routine returns the current time in terms of timer hardware clock
|
|
* cycles.
|
|
*
|
|
* @return up counter of elapsed clock cycles
|
|
*/
|
|
u32_t _timer_cycle_get_32(void)
|
|
{
|
|
/* We just want a cycle count so just post what's in the low 32
|
|
* bits of the mtime real-time counter
|
|
*/
|
|
return mtime->val_low;
|
|
}
|