zephyr/drivers/counter/counter_nxp_s32_sys_timer.c

425 lines
12 KiB
C

/*
* Copyright 2022-2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_s32_sys_timer
#include <zephyr/kernel.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/drivers/clock_control.h>
#if defined(CONFIG_GIC)
#include <zephyr/drivers/interrupt_controller/gic.h>
#endif /* CONFIG_GIC */
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(nxp_s32_sys_timer, CONFIG_COUNTER_LOG_LEVEL);
/* System Timer Module (STM) register definitions */
/* Control */
#define STM_CR 0x0
#define STM_CR_TEN_MASK BIT(0)
#define STM_CR_TEN(v) FIELD_PREP(STM_CR_TEN_MASK, (v))
#define STM_CR_FRZ_MASK BIT(1)
#define STM_CR_FRZ(v) FIELD_PREP(STM_CR_FRZ_MASK, (v))
#define STM_CR_CPS_MASK GENMASK(15, 8)
#define STM_CR_CPS(v) FIELD_PREP(STM_CR_CPS_MASK, (v))
/* Count */
#define STM_CNT 0x4
#define STM_CNT_CNT_MASK GENMASK(31, 0)
#define STM_CNT_CNT(v) FIELD_PREP(STM_CNT_CNT_MASK, (v))
/* Channel Control */
#define STM_CCR(n) (0x10 + 0x10 * (n))
#define STM_CCR_CEN_MASK BIT(0)
#define STM_CCR_CEN(v) FIELD_PREP(STM_CCR_CEN_MASK, (v))
/* Channel Interrupt */
#define STM_CIR(n) (0x14 + 0x10 * (n))
#define STM_CIR_CIF_MASK BIT(0)
#define STM_CIR_CIF(v) FIELD_PREP(STM_CIR_CIF_MASK, (v))
/* Channel Compare */
#define STM_CMP(n) (0x18 + 0x10 * (n))
#define STM_CMP_CMP_MASK GENMASK(31, 0)
#define STM_CMP_CMP(v) FIELD_PREP(STM_CMP_CMP_MASK, (v))
/* Handy accessors */
#define REG_READ(r) sys_read32(config->base + (r))
#define REG_WRITE(r, v) sys_write32((v), config->base + (r))
#define SYS_TIMER_MAX_VALUE 0xFFFFFFFFU
#define SYS_TIMER_NUM_CHANNELS 4
struct nxp_s32_sys_timer_chan_data {
counter_alarm_callback_t callback;
void *user_data;
};
struct nxp_s32_sys_timer_data {
struct nxp_s32_sys_timer_chan_data ch_data[SYS_TIMER_NUM_CHANNELS];
uint32_t guard_period;
atomic_t irq_pending;
};
struct nxp_s32_sys_timer_config {
struct counter_config_info info;
mem_addr_t base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
uint8_t prescaler;
bool freeze;
unsigned int irqn;
};
static ALWAYS_INLINE void irq_set_pending(unsigned int irq)
{
#if defined(CONFIG_GIC)
arm_gic_irq_set_pending(irq);
#else
NVIC_SetPendingIRQ(irq);
#endif /* CONFIG_GIC */
}
static uint32_t ticks_add(uint32_t val1, uint32_t val2, uint32_t top)
{
uint32_t to_top;
if (likely(IS_BIT_MASK(top))) {
return (val1 + val2) & top;
}
/* top is not 2^n-1 */
to_top = top - val1;
return (val2 <= to_top) ? val1 + val2 : val2 - to_top;
}
static uint32_t ticks_sub(uint32_t val, uint32_t old, uint32_t top)
{
if (likely(IS_BIT_MASK(top))) {
return (val - old) & top;
}
/* top is not 2^n-1 */
return (val >= old) ? (val - old) : val + top + 1 - old;
}
static ALWAYS_INLINE void stm_disable_channel(const struct nxp_s32_sys_timer_config *config,
uint8_t channel)
{
REG_WRITE(STM_CCR(channel), STM_CCR_CEN(0U));
REG_WRITE(STM_CIR(channel), STM_CIR_CIF(1U));
}
static int stm_set_alarm(const struct device *dev, uint8_t channel, uint32_t ticks, uint32_t flags)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
struct nxp_s32_sys_timer_data *data = dev->data;
struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel];
const uint32_t now = REG_READ(STM_CNT);
const uint32_t top_val = config->info.max_top_value;
int err = 0;
uint32_t diff;
uint32_t max_rel_val;
bool irq_on_late;
if (flags & COUNTER_ALARM_CFG_ABSOLUTE) {
__ASSERT_NO_MSG(data->guard_period < top_val);
max_rel_val = top_val - data->guard_period;
irq_on_late = !!(flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE);
} else {
/*
* If relative value is smaller than half of the counter range it is assumed
* that there is a risk of setting value too late and late detection algorithm
* must be applied. When late setting is detected, interrupt shall be
* triggered for immediate expiration of the timer. Detection is performed
* by limiting relative distance between CMP and CNT.
*
* Note that half of counter range is an arbitrary value.
*/
irq_on_late = ticks < (top_val / 2);
/* Limit max to detect short relative being set too late */
max_rel_val = irq_on_late ? top_val / 2 : top_val;
ticks = ticks_add(now, ticks, top_val);
}
/* Disable the channel before loading the new value so that it takes effect immediately */
stm_disable_channel(config, channel);
REG_WRITE(STM_CMP(channel), ticks);
REG_WRITE(STM_CCR(channel), STM_CCR_CEN(1U));
/*
* Decrement value to detect also case when ticks == CNT. Otherwise, condition would need
* to include comparing diff against 0.
*/
diff = ticks_sub(ticks - 1, REG_READ(STM_CNT), top_val);
if (diff > max_rel_val) {
if (flags & COUNTER_ALARM_CFG_ABSOLUTE) {
err = -ETIME;
}
/*
* Interrupt is triggered always for relative alarm and for absolute depending
* on the flag
*/
if (irq_on_late) {
atomic_or(&data->irq_pending, BIT(channel));
irq_set_pending(config->irqn);
} else {
ch_data->callback = NULL;
}
}
return err;
}
static void stm_isr(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
struct nxp_s32_sys_timer_data *data = dev->data;
struct nxp_s32_sys_timer_chan_data *ch_data = NULL;
counter_alarm_callback_t cb = NULL;
void *cb_args = NULL;
uint8_t channel;
bool pending;
for (channel = 0; channel < SYS_TIMER_NUM_CHANNELS; ++channel) {
pending = FIELD_GET(STM_CCR_CEN_MASK, REG_READ(STM_CCR(channel))) &&
FIELD_GET(STM_CIR_CIF_MASK, REG_READ(STM_CIR(channel)));
if (pending || atomic_test_bit(&data->irq_pending, channel)) {
stm_disable_channel(config, channel);
atomic_and(&data->irq_pending, ~BIT(channel));
ch_data = &data->ch_data[channel];
if (ch_data->callback) {
cb = ch_data->callback;
cb_args = ch_data->user_data;
ch_data->callback = NULL;
ch_data->user_data = NULL;
cb(dev, channel, REG_READ(STM_CNT), cb_args);
}
}
}
}
static int nxp_s32_sys_timer_start(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
REG_WRITE(STM_CNT, 0U);
REG_WRITE(STM_CR, REG_READ(STM_CR) | STM_CR_TEN(1U));
return 0;
}
static int nxp_s32_sys_timer_stop(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
REG_WRITE(STM_CR, REG_READ(STM_CR) & ~STM_CR_TEN_MASK);
return 0;
}
static int nxp_s32_sys_timer_get_value(const struct device *dev, uint32_t *ticks)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
*ticks = REG_READ(STM_CNT);
return 0;
}
static int nxp_s32_sys_timer_set_alarm(const struct device *dev, uint8_t channel,
const struct counter_alarm_cfg *alarm_cfg)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
struct nxp_s32_sys_timer_data *data = dev->data;
struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel];
if (ch_data->callback) {
return -EBUSY;
}
if (alarm_cfg->ticks > config->info.max_top_value) {
LOG_ERR("Invalid ticks value %d", alarm_cfg->ticks);
return -EINVAL;
}
ch_data->callback = alarm_cfg->callback;
ch_data->user_data = alarm_cfg->user_data;
return stm_set_alarm(dev, channel, alarm_cfg->ticks, alarm_cfg->flags);
}
static int nxp_s32_sys_timer_cancel_alarm(const struct device *dev, uint8_t channel)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
struct nxp_s32_sys_timer_data *data = dev->data;
struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel];
stm_disable_channel(config, channel);
ch_data->callback = NULL;
ch_data->user_data = NULL;
return 0;
}
static uint32_t nxp_s32_sys_timer_get_pending_int(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
uint8_t i;
for (i = 0; i < counter_get_num_of_channels(dev); i++) {
if (REG_READ(STM_CIR(i)) & STM_CIR_CIF_MASK) {
return 1;
}
}
return 0;
}
static int nxp_s32_sys_timer_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
ARG_UNUSED(dev);
ARG_UNUSED(cfg);
/* Overflow is fixed and cannot be changed */
return -ENOTSUP;
}
static uint32_t nxp_s32_sys_timer_get_top_value(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
return config->info.max_top_value;
}
static int nxp_s32_sys_timer_set_guard_period(const struct device *dev, uint32_t guard,
uint32_t flags)
{
struct nxp_s32_sys_timer_data *data = dev->data;
ARG_UNUSED(flags);
__ASSERT_NO_MSG(guard < nxp_s32_sys_timer_get_top_value(dev));
data->guard_period = guard;
return 0;
}
static uint32_t nxp_s32_sys_timer_get_guard_period(const struct device *dev, uint32_t flags)
{
struct nxp_s32_sys_timer_data *data = dev->data;
ARG_UNUSED(flags);
return data->guard_period;
}
static uint32_t nxp_s32_sys_timer_get_frequency(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
uint32_t clock_rate;
if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate)) {
LOG_ERR("Failed to get clock frequency");
return 0;
}
return clock_rate / (config->prescaler + 1U);
}
static int nxp_s32_sys_timer_init(const struct device *dev)
{
const struct nxp_s32_sys_timer_config *config = dev->config;
struct nxp_s32_sys_timer_data *data = dev->data;
struct nxp_s32_sys_timer_chan_data *ch_data;
int i;
int err;
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("Clock control device not ready");
return -ENODEV;
}
err = clock_control_on(config->clock_dev, config->clock_subsys);
if (err) {
LOG_ERR("Failed to enable clock");
return err;
}
REG_WRITE(STM_CNT, 0U);
REG_WRITE(STM_CR,
STM_CR_FRZ(config->freeze) |
STM_CR_CPS(config->prescaler) |
STM_CR_TEN(1U));
for (i = 0; i < counter_get_num_of_channels(dev); i++) {
ch_data = &data->ch_data[i];
ch_data->callback = NULL;
ch_data->user_data = NULL;
REG_WRITE(STM_CCR(i), STM_CCR_CEN(0U));
REG_WRITE(STM_CIR(i), STM_CIR_CIF(1U));
REG_WRITE(STM_CMP(i), 0U);
}
return 0;
}
static const struct counter_driver_api nxp_s32_sys_timer_driver_api = {
.start = nxp_s32_sys_timer_start,
.stop = nxp_s32_sys_timer_stop,
.get_value = nxp_s32_sys_timer_get_value,
.set_alarm = nxp_s32_sys_timer_set_alarm,
.cancel_alarm = nxp_s32_sys_timer_cancel_alarm,
.set_top_value = nxp_s32_sys_timer_set_top_value,
.get_top_value = nxp_s32_sys_timer_get_top_value,
.set_guard_period = nxp_s32_sys_timer_set_guard_period,
.get_guard_period = nxp_s32_sys_timer_get_guard_period,
.get_pending_int = nxp_s32_sys_timer_get_pending_int,
.get_freq = nxp_s32_sys_timer_get_frequency
};
#define SYS_TIMER_INIT_DEVICE(n) \
static int nxp_s32_sys_timer_##n##_init(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
stm_isr, DEVICE_DT_INST_GET(n), \
COND_CODE_1(DT_INST_IRQ_HAS_CELL(n, flags), \
(DT_INST_IRQ(n, flags)), (0))); \
irq_enable(DT_INST_IRQN(n)); \
\
return nxp_s32_sys_timer_init(dev); \
} \
\
static struct nxp_s32_sys_timer_data nxp_s32_sys_timer_data_##n; \
\
static const struct nxp_s32_sys_timer_config nxp_s32_sys_timer_config_##n = { \
.info = { \
.max_top_value = SYS_TIMER_MAX_VALUE, \
.channels = SYS_TIMER_NUM_CHANNELS, \
.flags = COUNTER_CONFIG_INFO_COUNT_UP, \
}, \
.base = DT_INST_REG_ADDR(n), \
.freeze = DT_INST_PROP(n, freeze), \
.prescaler = DT_INST_PROP(n, prescaler) - 1, \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.irqn = DT_INST_IRQN(n), \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
nxp_s32_sys_timer_##n##_init, \
NULL, \
&nxp_s32_sys_timer_data_##n, \
&nxp_s32_sys_timer_config_##n, \
POST_KERNEL, \
CONFIG_COUNTER_INIT_PRIORITY, \
&nxp_s32_sys_timer_driver_api);
DT_INST_FOREACH_STATUS_OKAY(SYS_TIMER_INIT_DEVICE)