/* * Copyright 2022-2024 NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_s32_sys_timer #include #include #include #if defined(CONFIG_GIC) #include #endif /* CONFIG_GIC */ #include #include LOG_MODULE_REGISTER(nxp_s32_sys_timer, CONFIG_COUNTER_LOG_LEVEL); /* System Timer Module (STM) register definitions */ /* Control */ #define STM_CR 0x0 #define STM_CR_TEN_MASK BIT(0) #define STM_CR_TEN(v) FIELD_PREP(STM_CR_TEN_MASK, (v)) #define STM_CR_FRZ_MASK BIT(1) #define STM_CR_FRZ(v) FIELD_PREP(STM_CR_FRZ_MASK, (v)) #define STM_CR_CPS_MASK GENMASK(15, 8) #define STM_CR_CPS(v) FIELD_PREP(STM_CR_CPS_MASK, (v)) /* Count */ #define STM_CNT 0x4 #define STM_CNT_CNT_MASK GENMASK(31, 0) #define STM_CNT_CNT(v) FIELD_PREP(STM_CNT_CNT_MASK, (v)) /* Channel Control */ #define STM_CCR(n) (0x10 + 0x10 * (n)) #define STM_CCR_CEN_MASK BIT(0) #define STM_CCR_CEN(v) FIELD_PREP(STM_CCR_CEN_MASK, (v)) /* Channel Interrupt */ #define STM_CIR(n) (0x14 + 0x10 * (n)) #define STM_CIR_CIF_MASK BIT(0) #define STM_CIR_CIF(v) FIELD_PREP(STM_CIR_CIF_MASK, (v)) /* Channel Compare */ #define STM_CMP(n) (0x18 + 0x10 * (n)) #define STM_CMP_CMP_MASK GENMASK(31, 0) #define STM_CMP_CMP(v) FIELD_PREP(STM_CMP_CMP_MASK, (v)) /* Handy accessors */ #define REG_READ(r) sys_read32(config->base + (r)) #define REG_WRITE(r, v) sys_write32((v), config->base + (r)) #define SYS_TIMER_MAX_VALUE 0xFFFFFFFFU #define SYS_TIMER_NUM_CHANNELS 4 struct nxp_s32_sys_timer_chan_data { counter_alarm_callback_t callback; void *user_data; }; struct nxp_s32_sys_timer_data { struct nxp_s32_sys_timer_chan_data ch_data[SYS_TIMER_NUM_CHANNELS]; uint32_t guard_period; atomic_t irq_pending; }; struct nxp_s32_sys_timer_config { struct counter_config_info info; mem_addr_t base; const struct device *clock_dev; clock_control_subsys_t clock_subsys; uint8_t prescaler; bool freeze; unsigned int irqn; }; static ALWAYS_INLINE void irq_set_pending(unsigned int irq) { #if defined(CONFIG_GIC) arm_gic_irq_set_pending(irq); #else NVIC_SetPendingIRQ(irq); #endif /* CONFIG_GIC */ } static uint32_t ticks_add(uint32_t val1, uint32_t val2, uint32_t top) { uint32_t to_top; if (likely(IS_BIT_MASK(top))) { return (val1 + val2) & top; } /* top is not 2^n-1 */ to_top = top - val1; return (val2 <= to_top) ? val1 + val2 : val2 - to_top; } static uint32_t ticks_sub(uint32_t val, uint32_t old, uint32_t top) { if (likely(IS_BIT_MASK(top))) { return (val - old) & top; } /* top is not 2^n-1 */ return (val >= old) ? (val - old) : val + top + 1 - old; } static ALWAYS_INLINE void stm_disable_channel(const struct nxp_s32_sys_timer_config *config, uint8_t channel) { REG_WRITE(STM_CCR(channel), STM_CCR_CEN(0U)); REG_WRITE(STM_CIR(channel), STM_CIR_CIF(1U)); } static int stm_set_alarm(const struct device *dev, uint8_t channel, uint32_t ticks, uint32_t flags) { const struct nxp_s32_sys_timer_config *config = dev->config; struct nxp_s32_sys_timer_data *data = dev->data; struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel]; const uint32_t now = REG_READ(STM_CNT); const uint32_t top_val = config->info.max_top_value; int err = 0; uint32_t diff; uint32_t max_rel_val; bool irq_on_late; if (flags & COUNTER_ALARM_CFG_ABSOLUTE) { __ASSERT_NO_MSG(data->guard_period < top_val); max_rel_val = top_val - data->guard_period; irq_on_late = !!(flags & COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE); } else { /* * If relative value is smaller than half of the counter range it is assumed * that there is a risk of setting value too late and late detection algorithm * must be applied. When late setting is detected, interrupt shall be * triggered for immediate expiration of the timer. Detection is performed * by limiting relative distance between CMP and CNT. * * Note that half of counter range is an arbitrary value. */ irq_on_late = ticks < (top_val / 2); /* Limit max to detect short relative being set too late */ max_rel_val = irq_on_late ? top_val / 2 : top_val; ticks = ticks_add(now, ticks, top_val); } /* Disable the channel before loading the new value so that it takes effect immediately */ stm_disable_channel(config, channel); REG_WRITE(STM_CMP(channel), ticks); REG_WRITE(STM_CCR(channel), STM_CCR_CEN(1U)); /* * Decrement value to detect also case when ticks == CNT. Otherwise, condition would need * to include comparing diff against 0. */ diff = ticks_sub(ticks - 1, REG_READ(STM_CNT), top_val); if (diff > max_rel_val) { if (flags & COUNTER_ALARM_CFG_ABSOLUTE) { err = -ETIME; } /* * Interrupt is triggered always for relative alarm and for absolute depending * on the flag */ if (irq_on_late) { atomic_or(&data->irq_pending, BIT(channel)); irq_set_pending(config->irqn); } else { ch_data->callback = NULL; } } return err; } static void stm_isr(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; struct nxp_s32_sys_timer_data *data = dev->data; struct nxp_s32_sys_timer_chan_data *ch_data = NULL; counter_alarm_callback_t cb = NULL; void *cb_args = NULL; uint8_t channel; bool pending; for (channel = 0; channel < SYS_TIMER_NUM_CHANNELS; ++channel) { pending = FIELD_GET(STM_CCR_CEN_MASK, REG_READ(STM_CCR(channel))) && FIELD_GET(STM_CIR_CIF_MASK, REG_READ(STM_CIR(channel))); if (pending || atomic_test_bit(&data->irq_pending, channel)) { stm_disable_channel(config, channel); atomic_and(&data->irq_pending, ~BIT(channel)); ch_data = &data->ch_data[channel]; if (ch_data->callback) { cb = ch_data->callback; cb_args = ch_data->user_data; ch_data->callback = NULL; ch_data->user_data = NULL; cb(dev, channel, REG_READ(STM_CNT), cb_args); } } } } static int nxp_s32_sys_timer_start(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; REG_WRITE(STM_CNT, 0U); REG_WRITE(STM_CR, REG_READ(STM_CR) | STM_CR_TEN(1U)); return 0; } static int nxp_s32_sys_timer_stop(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; REG_WRITE(STM_CR, REG_READ(STM_CR) & ~STM_CR_TEN_MASK); return 0; } static int nxp_s32_sys_timer_get_value(const struct device *dev, uint32_t *ticks) { const struct nxp_s32_sys_timer_config *config = dev->config; *ticks = REG_READ(STM_CNT); return 0; } static int nxp_s32_sys_timer_set_alarm(const struct device *dev, uint8_t channel, const struct counter_alarm_cfg *alarm_cfg) { const struct nxp_s32_sys_timer_config *config = dev->config; struct nxp_s32_sys_timer_data *data = dev->data; struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel]; if (ch_data->callback) { return -EBUSY; } if (alarm_cfg->ticks > config->info.max_top_value) { LOG_ERR("Invalid ticks value %d", alarm_cfg->ticks); return -EINVAL; } ch_data->callback = alarm_cfg->callback; ch_data->user_data = alarm_cfg->user_data; return stm_set_alarm(dev, channel, alarm_cfg->ticks, alarm_cfg->flags); } static int nxp_s32_sys_timer_cancel_alarm(const struct device *dev, uint8_t channel) { const struct nxp_s32_sys_timer_config *config = dev->config; struct nxp_s32_sys_timer_data *data = dev->data; struct nxp_s32_sys_timer_chan_data *ch_data = &data->ch_data[channel]; stm_disable_channel(config, channel); ch_data->callback = NULL; ch_data->user_data = NULL; return 0; } static uint32_t nxp_s32_sys_timer_get_pending_int(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; uint8_t i; for (i = 0; i < counter_get_num_of_channels(dev); i++) { if (REG_READ(STM_CIR(i)) & STM_CIR_CIF_MASK) { return 1; } } return 0; } static int nxp_s32_sys_timer_set_top_value(const struct device *dev, const struct counter_top_cfg *cfg) { ARG_UNUSED(dev); ARG_UNUSED(cfg); /* Overflow is fixed and cannot be changed */ return -ENOTSUP; } static uint32_t nxp_s32_sys_timer_get_top_value(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; return config->info.max_top_value; } static int nxp_s32_sys_timer_set_guard_period(const struct device *dev, uint32_t guard, uint32_t flags) { struct nxp_s32_sys_timer_data *data = dev->data; ARG_UNUSED(flags); __ASSERT_NO_MSG(guard < nxp_s32_sys_timer_get_top_value(dev)); data->guard_period = guard; return 0; } static uint32_t nxp_s32_sys_timer_get_guard_period(const struct device *dev, uint32_t flags) { struct nxp_s32_sys_timer_data *data = dev->data; ARG_UNUSED(flags); return data->guard_period; } static uint32_t nxp_s32_sys_timer_get_frequency(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; uint32_t clock_rate; if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &clock_rate)) { LOG_ERR("Failed to get clock frequency"); return 0; } return clock_rate / (config->prescaler + 1U); } static int nxp_s32_sys_timer_init(const struct device *dev) { const struct nxp_s32_sys_timer_config *config = dev->config; struct nxp_s32_sys_timer_data *data = dev->data; struct nxp_s32_sys_timer_chan_data *ch_data; int i; int err; if (!device_is_ready(config->clock_dev)) { LOG_ERR("Clock control device not ready"); return -ENODEV; } err = clock_control_on(config->clock_dev, config->clock_subsys); if (err) { LOG_ERR("Failed to enable clock"); return err; } REG_WRITE(STM_CNT, 0U); REG_WRITE(STM_CR, STM_CR_FRZ(config->freeze) | STM_CR_CPS(config->prescaler) | STM_CR_TEN(1U)); for (i = 0; i < counter_get_num_of_channels(dev); i++) { ch_data = &data->ch_data[i]; ch_data->callback = NULL; ch_data->user_data = NULL; REG_WRITE(STM_CCR(i), STM_CCR_CEN(0U)); REG_WRITE(STM_CIR(i), STM_CIR_CIF(1U)); REG_WRITE(STM_CMP(i), 0U); } return 0; } static const struct counter_driver_api nxp_s32_sys_timer_driver_api = { .start = nxp_s32_sys_timer_start, .stop = nxp_s32_sys_timer_stop, .get_value = nxp_s32_sys_timer_get_value, .set_alarm = nxp_s32_sys_timer_set_alarm, .cancel_alarm = nxp_s32_sys_timer_cancel_alarm, .set_top_value = nxp_s32_sys_timer_set_top_value, .get_top_value = nxp_s32_sys_timer_get_top_value, .set_guard_period = nxp_s32_sys_timer_set_guard_period, .get_guard_period = nxp_s32_sys_timer_get_guard_period, .get_pending_int = nxp_s32_sys_timer_get_pending_int, .get_freq = nxp_s32_sys_timer_get_frequency }; #define SYS_TIMER_INIT_DEVICE(n) \ static int nxp_s32_sys_timer_##n##_init(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ stm_isr, DEVICE_DT_INST_GET(n), \ COND_CODE_1(DT_INST_IRQ_HAS_CELL(n, flags), \ (DT_INST_IRQ(n, flags)), (0))); \ irq_enable(DT_INST_IRQN(n)); \ \ return nxp_s32_sys_timer_init(dev); \ } \ \ static struct nxp_s32_sys_timer_data nxp_s32_sys_timer_data_##n; \ \ static const struct nxp_s32_sys_timer_config nxp_s32_sys_timer_config_##n = { \ .info = { \ .max_top_value = SYS_TIMER_MAX_VALUE, \ .channels = SYS_TIMER_NUM_CHANNELS, \ .flags = COUNTER_CONFIG_INFO_COUNT_UP, \ }, \ .base = DT_INST_REG_ADDR(n), \ .freeze = DT_INST_PROP(n, freeze), \ .prescaler = DT_INST_PROP(n, prescaler) - 1, \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \ .clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \ .irqn = DT_INST_IRQN(n), \ }; \ \ DEVICE_DT_INST_DEFINE(n, \ nxp_s32_sys_timer_##n##_init, \ NULL, \ &nxp_s32_sys_timer_data_##n, \ &nxp_s32_sys_timer_config_##n, \ POST_KERNEL, \ CONFIG_COUNTER_INIT_PRIORITY, \ &nxp_s32_sys_timer_driver_api); DT_INST_FOREACH_STATUS_OKAY(SYS_TIMER_INIT_DEVICE)