zephyr/soc/xtensa/esp32/esp32-mp.c

291 lines
7.8 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/* Include esp-idf headers first to avoid redefining BIT() macro */
#include "soc/dport_reg.h"
#include "soc/gpio_periph.h"
#include "soc/rtc_periph.h"
#include <drivers/interrupt_controller/intc_esp32.h>
#include <soc.h>
#include <device.h>
#include <zephyr.h>
#include <spinlock.h>
#include <kernel_structs.h>
#define Z_REG(base, off) (*(volatile uint32_t *)((base) + (off)))
#define RTC_CNTL_BASE 0x3ff48000
#define RTC_CNTL_OPTIONS0 Z_REG(RTC_CNTL_BASE, 0x0)
#define RTC_CNTL_SW_CPU_STALL Z_REG(RTC_CNTL_BASE, 0xac)
#define DPORT_BASE 0x3ff00000
#define DPORT_APPCPU_CTRL_A Z_REG(DPORT_BASE, 0x02C)
#define DPORT_APPCPU_CTRL_B Z_REG(DPORT_BASE, 0x030)
#define DPORT_APPCPU_CTRL_C Z_REG(DPORT_BASE, 0x034)
struct cpustart_rec {
int cpu;
arch_cpustart_t fn;
char *stack_top;
void *arg;
int vecbase;
volatile int *alive;
};
volatile struct cpustart_rec *start_rec;
static void *appcpu_top;
static bool cpus_active[CONFIG_MP_NUM_CPUS];
static struct k_spinlock loglock;
extern void z_sched_ipi(void);
/* Note that the logging done here is ACTUALLY REQUIRED FOR RELIABLE
* OPERATION! At least one particular board will experience spurious
* hangs during initialization (usually the APPCPU fails to start at
* all) without these calls present. It's not just time -- careful
* use of k_busy_wait() (and even hand-crafted timer loops using the
* Xtensa timer SRs directly) that duplicates the timing exactly still
* sees hangs. Something is happening inside the ROM UART code that
* magically makes the startup sequence reliable.
*
* Leave this in place until the sequence is understood better.
*
* (Note that the use of the spinlock is cosmetic only -- if you take
* it out the messages will interleave across the two CPUs but startup
* will still be reliable.)
*/
void smp_log(const char *msg)
{
k_spinlock_key_t key = k_spin_lock(&loglock);
while (*msg) {
esp_rom_uart_tx_one_char(*msg++);
}
esp_rom_uart_tx_one_char('\r');
esp_rom_uart_tx_one_char('\n');
k_spin_unlock(&loglock, key);
}
static void appcpu_entry2(void)
{
volatile int ps, ie;
/* Copy over VECBASE from the main CPU for an initial value
* (will need to revisit this if we ever allow a user API to
* change interrupt vectors at runtime). Make sure interrupts
* are locally disabled, then synthesize a PS value that will
* enable them for the user code to pass to irq_unlock()
* later.
*/
__asm__ volatile("rsr.PS %0" : "=r"(ps));
ps &= ~(PS_EXCM_MASK | PS_INTLEVEL_MASK);
__asm__ volatile("wsr.PS %0" : : "r"(ps));
ie = 0;
__asm__ volatile("wsr.INTENABLE %0" : : "r"(ie));
__asm__ volatile("wsr.VECBASE %0" : : "r"(start_rec->vecbase));
__asm__ volatile("rsync");
/* Set up the CPU pointer. Really this should be xtensa arch
* code, not in the ESP-32 layer
*/
_cpu_t *cpu = &_kernel.cpus[1];
__asm__ volatile("wsr.MISC0 %0" : : "r"(cpu));
smp_log("ESP32: APPCPU running");
*start_rec->alive = 1;
start_rec->fn(start_rec->arg);
}
/* Defines a locally callable "function" named _stack-switch(). The
* first argument (in register a2 post-ENTRY) is the new stack pointer
* to go into register a1. The second (a3) is the entry point.
* Because this never returns, a0 is used as a scratch register then
* set to zero for the called function (a null return value is the
* signal for "top of stack" to the debugger).
*/
void z_appcpu_stack_switch(void *stack, void *entry);
__asm__("\n"
".align 4" "\n"
"z_appcpu_stack_switch:" "\n\t"
"entry a1, 16" "\n\t"
/* Subtle: we want the stack to be 16 bytes higher than the
* top on entry to the called function, because the ABI forces
* it to assume that those bytes are for its caller's A0-A3
* spill area. (In fact ENTRY instructions with stack
* adjustments less than 16 are a warning condition in the
* assembler). But we aren't a caller, have no bit set in
* WINDOWSTART and will never be asked to spill anything.
* Those 16 bytes would otherwise be wasted on the stack, so
* adjust
*/
"addi a1, a2, 16" "\n\t"
/* Clear WINDOWSTART so called functions never try to spill
* our callers' registers into the now-garbage stack pointers
* they contain. No need to set the bit corresponding to
* WINDOWBASE, our C callee will do that when it does an
* ENTRY.
*/
"movi a0, 0" "\n\t"
"wsr.WINDOWSTART a0" "\n\t"
/* Clear CALLINC field of PS (you would think it would, but
* our ENTRY doesn't actually do that) so the callee's ENTRY
* doesn't shift the registers
*/
"rsr.PS a0" "\n\t"
"movi a2, 0xfffcffff" "\n\t"
"and a0, a0, a2" "\n\t"
"wsr.PS a0" "\n\t"
"rsync" "\n\t"
"movi a0, 0" "\n\t"
"jx a3" "\n\t");
/* Carefully constructed to use no stack beyond compiler-generated ABI
* instructions. WE DO NOT KNOW WHERE THE STACK FOR THIS FUNCTION IS.
* The ROM library just picks a spot on its own with no input from our
* app linkage and tells us nothing about it until we're already
* running.
*/
static void appcpu_entry1(void)
{
z_appcpu_stack_switch(appcpu_top, appcpu_entry2);
}
/* The calls and sequencing here were extracted from the ESP-32
* FreeRTOS integration with just a tiny bit of cleanup. None of the
* calls or registers shown are documented, so treat this code with
* extreme caution.
*/
static void appcpu_start(void)
{
smp_log("ESP32: starting APPCPU");
/* These two calls are wrapped in a "stall_other_cpu" API in
* esp-idf. But in this context the appcpu is stalled by
* definition, so we can skip that complexity and just call
* the ROM directly.
*/
esp_rom_Cache_Flush(1);
esp_rom_Cache_Read_Enable(1);
RTC_CNTL_SW_CPU_STALL &= ~RTC_CNTL_SW_STALL_APPCPU_C1;
RTC_CNTL_OPTIONS0 &= ~RTC_CNTL_SW_STALL_APPCPU_C0;
DPORT_APPCPU_CTRL_B |= DPORT_APPCPU_CLKGATE_EN;
DPORT_APPCPU_CTRL_C &= ~DPORT_APPCPU_RUNSTALL;
/* Pulse the RESETTING bit */
DPORT_APPCPU_CTRL_A |= DPORT_APPCPU_RESETTING;
DPORT_APPCPU_CTRL_A &= ~DPORT_APPCPU_RESETTING;
/* Seems weird that you set the boot address AFTER starting
* the CPU, but this is how they do it...
*/
esp_rom_ets_set_appcpu_boot_addr((void *)appcpu_entry1);
smp_log("ESP32: APPCPU start sequence complete");
}
IRAM_ATTR static inline uint32_t prid(void)
{
uint32_t id;
__asm__ volatile (
"rsr.prid %0\n"
"extui %0,%0,13,1" : "=r" (id));
return id;
}
IRAM_ATTR static void esp_crosscore_isr(void *arg)
{
ARG_UNUSED(arg);
#ifdef CONFIG_SMP
/* Right now this interrupt is only used for IPIs */
z_sched_ipi();
#endif
const int core_id = prid();
if (core_id == 0) {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, 0);
} else {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, 0);
}
}
void arch_start_cpu(int cpu_num, k_thread_stack_t *stack, int sz,
arch_cpustart_t fn, void *arg)
{
volatile struct cpustart_rec sr;
int vb;
volatile int alive_flag;
__ASSERT(cpu_num == 1, "ESP-32 supports only two CPUs");
__asm__ volatile("rsr.VECBASE %0\n\t" : "=r"(vb));
alive_flag = 0;
sr.cpu = cpu_num;
sr.fn = fn;
sr.stack_top = Z_THREAD_STACK_BUFFER(stack) + sz;
sr.arg = arg;
sr.vecbase = vb;
sr.alive = &alive_flag;
appcpu_top = Z_THREAD_STACK_BUFFER(stack) + sz;
start_rec = &sr;
appcpu_start();
while (!alive_flag) {
}
cpus_active[0] = true;
cpus_active[CONFIG_MP_NUM_CPUS - 1] = true;
esp_intr_alloc(DT_IRQN(DT_NODELABEL(ipi0)),
ESP_INTR_FLAG_IRAM,
esp_crosscore_isr,
NULL,
NULL);
esp_intr_alloc(DT_IRQN(DT_NODELABEL(ipi1)),
ESP_INTR_FLAG_IRAM,
esp_crosscore_isr,
NULL,
NULL);
smp_log("ESP32: APPCPU initialized");
}
void arch_sched_ipi(void)
{
const int core_id = prid();
if (core_id == 0) {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_0_REG, DPORT_CPU_INTR_FROM_CPU_0);
} else {
DPORT_WRITE_PERI_REG(DPORT_CPU_INTR_FROM_CPU_1_REG, DPORT_CPU_INTR_FROM_CPU_1);
}
}
IRAM_ATTR bool arch_cpu_active(int cpu_num)
{
return cpus_active[cpu_num];
}