zephyr/drivers/flash/flash_npcx_fiu_qspi.c

294 lines
8.3 KiB
C

/*
* Copyright (c) 2023 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_fiu_qspi
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/flash/npcx_flash_api_ex.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/dt-bindings/flash_controller/npcx_fiu_qspi.h>
#include <soc.h>
#include "flash_npcx_fiu_qspi.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(npcx_fiu_qspi, LOG_LEVEL_ERR);
/* Driver convenience defines */
#define HAL_INSTANCE(dev) \
((struct fiu_reg *)((const struct npcx_qspi_fiu_config *)(dev)->config)->base)
/* Device config */
struct npcx_qspi_fiu_config {
/* Flash interface unit base address */
uintptr_t base;
/* Clock configuration */
struct npcx_clk_cfg clk_cfg;
/* Enable 2 external SPI devices for direct read on QSPI bus */
bool en_direct_access_2dev;
};
/* Device data */
struct npcx_qspi_fiu_data {
/* mutex of qspi bus controller */
struct k_sem lock_sem;
/* Current device configuration on QSPI bus */
const struct npcx_qspi_cfg *cur_cfg;
/* Current Software controlled Chip-Select number */
int sw_cs;
/* Current QSPI bus operation */
uint32_t operation;
};
/* NPCX SPI User Mode Access (UMA) functions */
static inline void qspi_npcx_uma_cs_level(const struct device *dev, uint8_t sw_cs, bool level)
{
struct fiu_reg *const inst = HAL_INSTANCE(dev);
/* Set chip select to high/low level */
if (level) {
inst->UMA_ECTS |= BIT(sw_cs);
} else {
inst->UMA_ECTS &= ~BIT(sw_cs);
}
}
static inline void qspi_npcx_uma_write_byte(const struct device *dev, uint8_t data)
{
struct fiu_reg *const inst = HAL_INSTANCE(dev);
/* Set data to UMA_CODE and trigger UMA */
inst->UMA_CODE = data;
inst->UMA_CTS = UMA_CODE_CMD_WR_ONLY;
/* EXEC_DONE will be zero automatically if a UMA transaction is completed. */
while (IS_BIT_SET(inst->UMA_CTS, NPCX_UMA_CTS_EXEC_DONE)) {
continue;
}
}
static inline void qspi_npcx_uma_read_byte(const struct device *dev, uint8_t *data)
{
struct fiu_reg *const inst = HAL_INSTANCE(dev);
/* Trigger UMA and Get data from DB0 later */
inst->UMA_CTS = UMA_CODE_RD_BYTE(1);
while (IS_BIT_SET(inst->UMA_CTS, NPCX_UMA_CTS_EXEC_DONE)) {
continue;
}
*data = inst->UMA_DB0;
}
/* NPCX SPI Direct Read Access (DRA)/User Mode Access (UMA) configuration functions */
static inline void qspi_npcx_config_uma_mode(const struct device *dev,
const struct npcx_qspi_cfg *qspi_cfg)
{
struct fiu_reg *const inst = HAL_INSTANCE(dev);
if ((qspi_cfg->flags & NPCX_QSPI_SEC_FLASH_SL) != 0) {
inst->UMA_ECTS |= BIT(NPCX_UMA_ECTS_SEC_CS);
} else {
inst->UMA_ECTS &= ~BIT(NPCX_UMA_ECTS_SEC_CS);
}
}
static inline void qspi_npcx_config_dra_4byte_mode(const struct device *dev,
const struct npcx_qspi_cfg *qspi_cfg)
{
#if defined(CONFIG_FLASH_NPCX_FIU_SUPP_DRA_4B_ADDR)
struct fiu_reg *const inst = HAL_INSTANCE(dev);
#if defined(CONFIG_FLASH_NPCX_FIU_DRA_V1)
if (qspi_cfg->enter_4ba != 0) {
if ((qspi_cfg->flags & NPCX_QSPI_SEC_FLASH_SL) != 0) {
inst->SPI1_DEV |= BIT(NPCX_SPI1_DEV_FOUR_BADDR_CS11);
} else {
inst->SPI1_DEV |= BIT(NPCX_SPI1_DEV_FOUR_BADDR_CS10);
}
} else {
inst->SPI1_DEV &= ~(BIT(NPCX_SPI1_DEV_FOUR_BADDR_CS11) |
BIT(NPCX_SPI1_DEV_FOUR_BADDR_CS10));
}
#elif defined(CONFIG_FLASH_NPCX_FIU_DRA_V2)
if (qspi_cfg->enter_4ba != 0) {
SET_FIELD(inst->SPI_DEV, NPCX_SPI_DEV_NADDRB, NPCX_DEV_NUM_ADDR_4BYTE);
}
#endif
#endif /* CONFIG_FLASH_NPCX_FIU_SUPP_DRA_4B_ADDR */
}
static inline void qspi_npcx_config_dra_mode(const struct device *dev,
const struct npcx_qspi_cfg *qspi_cfg)
{
struct fiu_reg *const inst = HAL_INSTANCE(dev);
/* Select SPI device number for DRA mode in npcx4 series */
if (IS_ENABLED(CONFIG_FLASH_NPCX_FIU_DRA_V2)) {
int spi_dev_num = (qspi_cfg->flags & NPCX_QSPI_SEC_FLASH_SL) != 0 ? 1 : 0;
SET_FIELD(inst->BURST_CFG, NPCX_BURST_CFG_SPI_DEV_SEL, spi_dev_num);
}
/* Enable quad mode of Direct Read Mode if needed */
if (qspi_cfg->qer_type != JESD216_DW15_QER_NONE) {
inst->RESP_CFG |= BIT(NPCX_RESP_CFG_QUAD_EN);
} else {
inst->RESP_CFG &= ~BIT(NPCX_RESP_CFG_QUAD_EN);
}
/* Selects the SPI read access type of Direct Read Access mode */
SET_FIELD(inst->SPI_FL_CFG, NPCX_SPI_FL_CFG_RD_MODE, qspi_cfg->rd_mode);
/* Enable/Disable 4 byte address mode for Direct Read Access (DRA) */
qspi_npcx_config_dra_4byte_mode(dev, qspi_cfg);
}
static inline void qspi_npcx_fiu_set_operation(const struct device *dev, uint32_t operation)
{
if ((operation & NPCX_EX_OP_INT_FLASH_WP) != 0) {
npcx_pinctrl_flash_write_protect_set();
}
}
/* NPCX specific QSPI-FIU controller functions */
int qspi_npcx_fiu_uma_transceive(const struct device *dev, struct npcx_uma_cfg *cfg,
uint32_t flags)
{
struct npcx_qspi_fiu_data *const data = dev->data;
/* UMA transaction is permitted? */
if ((data->operation & NPCX_EX_OP_LOCK_UMA) != 0) {
return -EPERM;
}
/* Assert chip select */
qspi_npcx_uma_cs_level(dev, data->sw_cs, false);
/* Transmit op-code first */
qspi_npcx_uma_write_byte(dev, cfg->opcode);
if ((flags & NPCX_UMA_ACCESS_ADDR) != 0) {
/* 3-byte or 4-byte address? */
const int addr_start = (data->cur_cfg->enter_4ba != 0) ? 0 : 1;
for (size_t i = addr_start; i < 4; i++) {
LOG_DBG("addr %d, %02x", i, cfg->addr.u8[i]);
qspi_npcx_uma_write_byte(dev, cfg->addr.u8[i]);
}
}
if ((flags & NPCX_UMA_ACCESS_WRITE) != 0) {
if (cfg->tx_buf == NULL) {
return -EINVAL;
}
for (size_t i = 0; i < cfg->tx_count; i++) {
qspi_npcx_uma_write_byte(dev, cfg->tx_buf[i]);
}
}
if ((flags & NPCX_UMA_ACCESS_READ) != 0) {
if (cfg->rx_buf == NULL) {
return -EINVAL;
}
for (size_t i = 0; i < cfg->rx_count; i++) {
qspi_npcx_uma_read_byte(dev, cfg->rx_buf + i);
}
}
/* De-assert chip select */
qspi_npcx_uma_cs_level(dev, data->sw_cs, true);
return 0;
}
void qspi_npcx_fiu_mutex_lock_configure(const struct device *dev,
const struct npcx_qspi_cfg *cfg,
const uint32_t operation)
{
struct npcx_qspi_fiu_data *const data = dev->data;
k_sem_take(&data->lock_sem, K_FOREVER);
/* If the current device is different from previous one, configure it */
if (data->cur_cfg != cfg) {
data->cur_cfg = cfg;
/* Apply pin-muxing and tri-state */
pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
/* Configure User Mode Access (UMA) settings */
qspi_npcx_config_uma_mode(dev, cfg);
/* Configure for Direct Read Access (DRA) settings */
qspi_npcx_config_dra_mode(dev, cfg);
/* Save SW CS bit used in UMA mode */
data->sw_cs = find_lsb_set(cfg->flags & NPCX_QSPI_SW_CS_MASK) - 1;
}
/* Set QSPI bus operation */
if (data->operation != operation) {
qspi_npcx_fiu_set_operation(dev, operation);
data->operation = operation;
}
}
void qspi_npcx_fiu_mutex_unlock(const struct device *dev)
{
struct npcx_qspi_fiu_data *const data = dev->data;
k_sem_give(&data->lock_sem);
}
static int qspi_npcx_fiu_init(const struct device *dev)
{
const struct npcx_qspi_fiu_config *const config = dev->config;
struct npcx_qspi_fiu_data *const data = dev->data;
const struct device *const clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
int ret;
if (!device_is_ready(clk_dev)) {
LOG_ERR("%s device not ready", clk_dev->name);
return -ENODEV;
}
/* Turn on device clock first and get source clock freq. */
ret = clock_control_on(clk_dev,
(clock_control_subsys_t)&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on FIU clock fail %d", ret);
return ret;
}
/* initialize mutex for qspi controller */
k_sem_init(&data->lock_sem, 1, 1);
/* Enable direct access for 2 external SPI devices */
if (config->en_direct_access_2dev) {
#if defined(CONFIG_FLASH_NPCX_FIU_SUPP_DRA_2_DEV)
struct fiu_reg *const inst = HAL_INSTANCE(dev);
inst->FIU_EXT_CFG |= BIT(NPCX_FIU_EXT_CFG_SPI1_2DEV);
#endif
}
return 0;
}
#define NPCX_SPI_FIU_INIT(n) \
static const struct npcx_qspi_fiu_config npcx_qspi_fiu_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(n), \
.en_direct_access_2dev = DT_INST_PROP(n, en_direct_access_2dev), \
}; \
static struct npcx_qspi_fiu_data npcx_qspi_fiu_data_##n; \
DEVICE_DT_INST_DEFINE(n, qspi_npcx_fiu_init, NULL, \
&npcx_qspi_fiu_data_##n, &npcx_qspi_fiu_config_##n, \
PRE_KERNEL_1, CONFIG_FLASH_INIT_PRIORITY, NULL);
DT_INST_FOREACH_STATUS_OKAY(NPCX_SPI_FIU_INIT)