unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2010-2016 Wind River Systems, Inc.
|
|
|
|
*
|
2017-01-19 09:01:01 +08:00
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @brief fixed-size stack object
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <kernel.h>
|
2016-11-08 23:36:50 +08:00
|
|
|
#include <kernel_structs.h>
|
2016-12-18 02:18:45 +08:00
|
|
|
#include <debug/object_tracing_common.h>
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
#include <toolchain.h>
|
2017-06-17 23:30:47 +08:00
|
|
|
#include <linker/sections.h>
|
2016-10-13 22:31:48 +08:00
|
|
|
#include <ksched.h>
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
#include <wait_q.h>
|
|
|
|
#include <misc/__assert.h>
|
2016-10-20 05:10:46 +08:00
|
|
|
#include <init.h>
|
|
|
|
|
|
|
|
extern struct k_stack _k_stack_list_start[];
|
|
|
|
extern struct k_stack _k_stack_list_end[];
|
|
|
|
|
2016-12-18 19:57:45 +08:00
|
|
|
#ifdef CONFIG_OBJECT_TRACING
|
2016-10-20 05:10:46 +08:00
|
|
|
|
2017-05-18 18:16:45 +08:00
|
|
|
struct k_stack *_trace_list_k_stack;
|
|
|
|
|
2016-10-20 05:10:46 +08:00
|
|
|
/*
|
|
|
|
* Complete initialization of statically defined stacks.
|
|
|
|
*/
|
|
|
|
static int init_stack_module(struct device *dev)
|
|
|
|
{
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
|
|
|
|
struct k_stack *stack;
|
|
|
|
|
|
|
|
for (stack = _k_stack_list_start; stack < _k_stack_list_end; stack++) {
|
|
|
|
SYS_TRACING_OBJ_INIT(k_stack, stack);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-11-09 03:06:55 +08:00
|
|
|
SYS_INIT(init_stack_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
|
2016-10-20 05:10:46 +08:00
|
|
|
|
2016-12-18 19:57:45 +08:00
|
|
|
#endif /* CONFIG_OBJECT_TRACING */
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
|
2017-04-21 23:55:34 +08:00
|
|
|
void k_stack_init(struct k_stack *stack, u32_t *buffer, int num_entries)
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
{
|
|
|
|
sys_dlist_init(&stack->wait_q);
|
|
|
|
stack->next = stack->base = buffer;
|
|
|
|
stack->top = stack->base + num_entries;
|
|
|
|
|
|
|
|
SYS_TRACING_OBJ_INIT(k_stack, stack);
|
|
|
|
}
|
|
|
|
|
2017-04-21 23:55:34 +08:00
|
|
|
void k_stack_push(struct k_stack *stack, u32_t data)
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
{
|
|
|
|
struct k_thread *first_pending_thread;
|
|
|
|
unsigned int key;
|
|
|
|
|
|
|
|
__ASSERT(stack->next != stack->top, "stack is full");
|
|
|
|
|
|
|
|
key = irq_lock();
|
|
|
|
|
|
|
|
first_pending_thread = _unpend_first_thread(&stack->wait_q);
|
|
|
|
|
|
|
|
if (first_pending_thread) {
|
2016-10-06 00:55:17 +08:00
|
|
|
_abort_thread_timeout(first_pending_thread);
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
_ready_thread(first_pending_thread);
|
|
|
|
|
|
|
|
_set_thread_return_value_with_data(first_pending_thread,
|
|
|
|
0, (void *)data);
|
|
|
|
|
|
|
|
if (!_is_in_isr() && _must_switch_threads()) {
|
|
|
|
(void)_Swap(key);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
*(stack->next) = data;
|
|
|
|
stack->next++;
|
|
|
|
}
|
|
|
|
|
|
|
|
irq_unlock(key);
|
|
|
|
}
|
|
|
|
|
2017-04-21 23:55:34 +08:00
|
|
|
int k_stack_pop(struct k_stack *stack, u32_t *data, s32_t timeout)
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
{
|
|
|
|
unsigned int key;
|
|
|
|
int result;
|
|
|
|
|
|
|
|
key = irq_lock();
|
|
|
|
|
|
|
|
if (likely(stack->next > stack->base)) {
|
|
|
|
stack->next--;
|
|
|
|
*data = *(stack->next);
|
|
|
|
irq_unlock(key);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (timeout == K_NO_WAIT) {
|
|
|
|
irq_unlock(key);
|
|
|
|
return -EBUSY;
|
|
|
|
}
|
|
|
|
|
|
|
|
_pend_current_thread(&stack->wait_q, timeout);
|
|
|
|
|
|
|
|
result = _Swap(key);
|
|
|
|
if (result == 0) {
|
2017-04-21 23:55:34 +08:00
|
|
|
*data = (u32_t)_current->base.swap_data;
|
unified: initial unified kernel implementation
Summary of what this includes:
initialization:
Copy from nano_init.c, with the following changes:
- the main thread is the continuation of the init thread, but an idle
thread is created as well
- _main() initializes threads in groups and starts the EXE group
- the ready queues are initialized
- the main thread is marked as non-essential once the system init is
done
- a weak main() symbol is provided if the application does not provide a
main() function
scheduler:
Not an exhaustive list, but basically provide primitives for:
- adding/removing a thread to/from a wait queue
- adding/removing a thread to/from the ready queue
- marking thread as ready
- locking/unlocking the scheduler
- instead of locking interrupts
- getting/setting thread priority
- checking what state (coop/preempt) a thread is currenlty running in
- rescheduling threads
- finding what thread is the next to run
- yielding/sleeping/aborting sleep
- finding the current thread
threads:
- Add operationns on threads, such as creating and starting them.
standardized handling of kernel object return codes:
- Kernel objects now cause _Swap() to return the following values:
0 => operation successful
-EAGAIN => operation timed out
-Exxxxx => operation failed for another reason
- The thread's swap_data field can be used to return any additional
information required to complete the operation, such as the actual
result of a successful operation.
timeouts:
- same as nano timeouts, renamed to simply 'timeouts'
- the kernel is still tick-based, but objects take timeout values in
ms for forward compatibility with a tickless kernel.
semaphores:
- Port of the nanokernel semaphores, which have the same basic behaviour
as the microkernel ones. Semaphore groups are not yet implemented.
- These semaphores are enhanced in that they accept an initial count and a
count limit. This allows configuring them as binary semaphores, and also
provisioning them without having to "give" the semaphore multiple times
before using them.
mutexes:
- Straight port of the microkernel mutexes. An init function is added to
allow defining them at runtime.
pipes:
- straight port
timers:
- amalgamation of nano and micro timers, with all functionalities
intact.
events:
- re-implementation, using semaphores and workqueues.
mailboxes:
- straight port
message queues:
- straight port of microkernel FIFOs
memory maps:
- straight port
workqueues:
- Basically, have all APIs follow the k_ naming rule, and use the _timeout
subsystem from the unified kernel directory, and not the _nano_timeout
one.
stacks:
- Port of the nanokernel stacks. They can now have multiple threads
pending on them and threads can wait with a timeout.
LIFOs:
- Straight port of the nanokernel LIFOs.
FIFOs:
- Straight port of the nanokernel FIFOs.
Work by: Dmitriy Korovkin <dmitriy.korovkin@windriver.com>
Peter Mitsis <peter.mitsis@windriver.com>
Allan Stephens <allan.stephens@windriver.com>
Benjamin Walsh <benjamin.walsh@windriver.com>
Change-Id: Id3cadb3694484ab2ca467889cfb029be3cd3a7d6
Signed-off-by: Benjamin Walsh <benjamin.walsh@windriver.com>
2016-09-03 06:55:39 +08:00
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|