mcuboot/boot/zephyr/main.c

557 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2014 Wind River Systems, Inc.
* Copyright (c) 2020 Arm Limited
* Copyright (c) 2021-2023 Nordic Semiconductor ASA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <zephyr/kernel.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/usb/usb_device.h>
#include <soc.h>
#include <zephyr/linker/linker-defs.h>
#if defined(CONFIG_BOOT_DISABLE_CACHES)
#include <zephyr/cache.h>
#endif
#if defined(CONFIG_ARM)
#include <cmsis_core.h>
#endif
#include "io/io.h"
#include "target.h"
#include "bootutil/bootutil_log.h"
#include "bootutil/image.h"
#include "bootutil/bootutil.h"
#include "bootutil/fault_injection_hardening.h"
#include "bootutil/mcuboot_status.h"
#include "flash_map_backend/flash_map_backend.h"
/* Check if Espressif target is supported */
#ifdef CONFIG_SOC_FAMILY_ESPRESSIF_ESP32
#include <bootloader_init.h>
#include <esp_loader.h>
#define IMAGE_INDEX_0 0
#define IMAGE_INDEX_1 1
#define PRIMARY_SLOT 0
#define SECONDARY_SLOT 1
#define IMAGE0_PRIMARY_START_ADDRESS \
DT_PROP_BY_IDX(DT_NODE_BY_FIXED_PARTITION_LABEL(image_0), reg, 0)
#define IMAGE0_PRIMARY_SIZE \
DT_PROP_BY_IDX(DT_NODE_BY_FIXED_PARTITION_LABEL(image_0), reg, 1)
#define IMAGE1_PRIMARY_START_ADDRESS \
DT_PROP_BY_IDX(DT_NODE_BY_FIXED_PARTITION_LABEL(image_1), reg, 0)
#define IMAGE1_PRIMARY_SIZE \
DT_PROP_BY_IDX(DT_NODE_BY_FIXED_PARTITION_LABEL(image_1), reg, 1)
#endif /* CONFIG_SOC_FAMILY_ESPRESSIF_ESP32 */
#ifdef CONFIG_MCUBOOT_SERIAL
#include "boot_serial/boot_serial.h"
#include "serial_adapter/serial_adapter.h"
const struct boot_uart_funcs boot_funcs = {
.read = console_read,
.write = console_write
};
#endif
#if defined(CONFIG_BOOT_USB_DFU_WAIT) || defined(CONFIG_BOOT_USB_DFU_GPIO)
#include <zephyr/usb/class/usb_dfu.h>
#endif
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
#include <arm_cleanup.h>
#endif
/* CONFIG_LOG_MINIMAL is the legacy Kconfig property,
* replaced by CONFIG_LOG_MODE_MINIMAL.
*/
#if (defined(CONFIG_LOG_MODE_MINIMAL) || defined(CONFIG_LOG_MINIMAL))
#define ZEPHYR_LOG_MODE_MINIMAL 1
#endif
/* CONFIG_LOG_IMMEDIATE is the legacy Kconfig property,
* replaced by CONFIG_LOG_MODE_IMMEDIATE.
*/
#if (defined(CONFIG_LOG_MODE_IMMEDIATE) || defined(CONFIG_LOG_IMMEDIATE))
#define ZEPHYR_LOG_MODE_IMMEDIATE 1
#endif
#if defined(CONFIG_LOG) && !defined(ZEPHYR_LOG_MODE_IMMEDIATE) && \
!defined(ZEPHYR_LOG_MODE_MINIMAL)
#ifdef CONFIG_LOG_PROCESS_THREAD
#warning "The log internal thread for log processing can't transfer the log"\
"well for MCUBoot."
#else
#include <zephyr/logging/log_ctrl.h>
#define BOOT_LOG_PROCESSING_INTERVAL K_MSEC(30) /* [ms] */
/* log are processing in custom routine */
K_THREAD_STACK_DEFINE(boot_log_stack, CONFIG_MCUBOOT_LOG_THREAD_STACK_SIZE);
struct k_thread boot_log_thread;
volatile bool boot_log_stop = false;
K_SEM_DEFINE(boot_log_sem, 1, 1);
/* log processing need to be initalized by the application */
#define ZEPHYR_BOOT_LOG_START() zephyr_boot_log_start()
#define ZEPHYR_BOOT_LOG_STOP() zephyr_boot_log_stop()
#endif /* CONFIG_LOG_PROCESS_THREAD */
#else
/* synchronous log mode doesn't need to be initalized by the application */
#define ZEPHYR_BOOT_LOG_START() do { } while (false)
#define ZEPHYR_BOOT_LOG_STOP() do { } while (false)
#endif /* defined(CONFIG_LOG) && !defined(ZEPHYR_LOG_MODE_IMMEDIATE) && \
* !defined(ZEPHYR_LOG_MODE_MINIMAL)
*/
BOOT_LOG_MODULE_REGISTER(mcuboot);
void os_heap_init(void);
#if defined(CONFIG_ARM)
#ifdef CONFIG_SW_VECTOR_RELAY
extern void *_vector_table_pointer;
#endif
struct arm_vector_table {
uint32_t msp;
uint32_t reset;
};
static void do_boot(struct boot_rsp *rsp)
{
struct arm_vector_table *vt;
/* The beginning of the image is the ARM vector table, containing
* the initial stack pointer address and the reset vector
* consecutively. Manually set the stack pointer and jump into the
* reset vector
*/
#ifdef CONFIG_BOOT_RAM_LOAD
/* Get ram address for image */
vt = (struct arm_vector_table *)(rsp->br_hdr->ih_load_addr + rsp->br_hdr->ih_hdr_size);
#else
int rc;
const struct flash_area *fap;
static uint32_t dst[2];
/* Jump to flash image */
rc = flash_area_open(rsp->br_flash_dev_id, &fap);
assert(rc == 0);
rc = flash_area_read(fap, rsp->br_hdr->ih_hdr_size, dst, sizeof(dst));
assert(rc == 0);
#ifndef CONFIG_ASSERT
/* Enter a lock up as asserts are disabled */
if (rc != 0) {
while (1);
}
#endif
flash_area_close(fap);
vt = (struct arm_vector_table *)dst;
#endif
if (IS_ENABLED(CONFIG_SYSTEM_TIMER_HAS_DISABLE_SUPPORT)) {
sys_clock_disable();
}
#ifdef CONFIG_USB_DEVICE_STACK
/* Disable the USB to prevent it from firing interrupts */
usb_disable();
#endif
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
cleanup_arm_nvic(); /* cleanup NVIC registers */
#if defined(CONFIG_BOOT_DISABLE_CACHES)
/* Flush and disable instruction/data caches before chain-loading the application */
(void)sys_cache_instr_flush_all();
(void)sys_cache_data_flush_all();
sys_cache_instr_disable();
sys_cache_data_disable();
#endif
#if CONFIG_CPU_HAS_ARM_MPU || CONFIG_CPU_HAS_NXP_MPU
z_arm_clear_arm_mpu_config();
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD) && \
defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
/* Reset limit registers to avoid inflicting stack overflow on image
* being booted.
*/
__set_PSPLIM(0);
__set_MSPLIM(0);
#endif
#else
irq_lock();
#endif /* CONFIG_MCUBOOT_CLEANUP_ARM_CORE */
#ifdef CONFIG_BOOT_INTR_VEC_RELOC
#if defined(CONFIG_SW_VECTOR_RELAY)
_vector_table_pointer = vt;
#ifdef CONFIG_CPU_CORTEX_M_HAS_VTOR
SCB->VTOR = (uint32_t)__vector_relay_table;
#endif
#elif defined(CONFIG_CPU_CORTEX_M_HAS_VTOR)
SCB->VTOR = (uint32_t)vt;
#endif /* CONFIG_SW_VECTOR_RELAY */
#else /* CONFIG_BOOT_INTR_VEC_RELOC */
#if defined(CONFIG_CPU_CORTEX_M_HAS_VTOR) && defined(CONFIG_SW_VECTOR_RELAY)
_vector_table_pointer = _vector_start;
SCB->VTOR = (uint32_t)__vector_relay_table;
#endif
#endif /* CONFIG_BOOT_INTR_VEC_RELOC */
__set_MSP(vt->msp);
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
__set_CONTROL(0x00); /* application will configures core on its own */
__ISB();
#endif
((void (*)(void))vt->reset)();
}
#elif defined(CONFIG_XTENSA) || defined(CONFIG_RISCV)
#ifndef CONFIG_SOC_FAMILY_ESPRESSIF_ESP32
#define SRAM_BASE_ADDRESS 0xBE030000
static void copy_img_to_SRAM(int slot, unsigned int hdr_offset)
{
const struct flash_area *fap;
int area_id;
int rc;
unsigned char *dst = (unsigned char *)(SRAM_BASE_ADDRESS + hdr_offset);
BOOT_LOG_INF("Copying image to SRAM");
area_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
BOOT_LOG_ERR("flash_area_open failed with %d\n", rc);
goto done;
}
rc = flash_area_read(fap, hdr_offset, dst, fap->fa_size - hdr_offset);
if (rc != 0) {
BOOT_LOG_ERR("flash_area_read failed with %d\n", rc);
goto done;
}
done:
flash_area_close(fap);
}
#endif /* !CONFIG_SOC_FAMILY_ESPRESSIF_ESP32 */
/* Entry point (.ResetVector) is at the very beginning of the image.
* Simply copy the image to a suitable location and jump there.
*/
static void do_boot(struct boot_rsp *rsp)
{
void *start;
BOOT_LOG_INF("br_image_off = 0x%x\n", rsp->br_image_off);
BOOT_LOG_INF("ih_hdr_size = 0x%x\n", rsp->br_hdr->ih_hdr_size);
#ifdef CONFIG_SOC_FAMILY_ESPRESSIF_ESP32
int slot = (rsp->br_image_off == IMAGE0_PRIMARY_START_ADDRESS) ?
PRIMARY_SLOT : SECONDARY_SLOT;
/* Load memory segments and start from entry point */
start_cpu0_image(IMAGE_INDEX_0, slot, rsp->br_hdr->ih_hdr_size);
#else
/* Copy from the flash to HP SRAM */
copy_img_to_SRAM(0, rsp->br_hdr->ih_hdr_size);
/* Jump to entry point */
start = (void *)(SRAM_BASE_ADDRESS + rsp->br_hdr->ih_hdr_size);
((void (*)(void))start)();
#endif /* CONFIG_SOC_FAMILY_ESPRESSIF_ESP32 */
}
#else
/* Default: Assume entry point is at the very beginning of the image. Simply
* lock interrupts and jump there. This is the right thing to do for X86 and
* possibly other platforms.
*/
static void do_boot(struct boot_rsp *rsp)
{
void *start;
#if defined(MCUBOOT_RAM_LOAD)
start = (void *)(rsp->br_hdr->ih_load_addr + rsp->br_hdr->ih_hdr_size);
#else
uintptr_t flash_base;
int rc;
rc = flash_device_base(rsp->br_flash_dev_id, &flash_base);
assert(rc == 0);
start = (void *)(flash_base + rsp->br_image_off +
rsp->br_hdr->ih_hdr_size);
#endif
/* Lock interrupts and dive into the entry point */
irq_lock();
((void (*)(void))start)();
}
#endif
#if defined(CONFIG_LOG) && !defined(ZEPHYR_LOG_MODE_IMMEDIATE) && \
!defined(CONFIG_LOG_PROCESS_THREAD) && !defined(ZEPHYR_LOG_MODE_MINIMAL)
/* The log internal thread for log processing can't transfer log well as has too
* low priority.
* Dedicated thread for log processing below uses highest application
* priority. This allows to transmit all logs without adding k_sleep/k_yield
* anywhere else int the code.
*/
/* most simple log processing theread */
void boot_log_thread_func(void *dummy1, void *dummy2, void *dummy3)
{
(void)dummy1;
(void)dummy2;
(void)dummy3;
log_init();
while (1) {
#if defined(CONFIG_LOG1) || defined(CONFIG_LOG2)
/* support Zephyr legacy logging implementation before commit c5f2cde */
if (log_process(false) == false) {
#else
if (log_process() == false) {
#endif
if (boot_log_stop) {
break;
}
k_sleep(BOOT_LOG_PROCESSING_INTERVAL);
}
}
k_sem_give(&boot_log_sem);
}
void zephyr_boot_log_start(void)
{
/* start logging thread */
k_thread_create(&boot_log_thread, boot_log_stack,
K_THREAD_STACK_SIZEOF(boot_log_stack),
boot_log_thread_func, NULL, NULL, NULL,
K_HIGHEST_APPLICATION_THREAD_PRIO, 0,
BOOT_LOG_PROCESSING_INTERVAL);
k_thread_name_set(&boot_log_thread, "logging");
}
void zephyr_boot_log_stop(void)
{
boot_log_stop = true;
/* wait until log procesing thread expired
* This can be reworked using a thread_join() API once a such will be
* available in zephyr.
* see https://github.com/zephyrproject-rtos/zephyr/issues/21500
*/
(void)k_sem_take(&boot_log_sem, K_FOREVER);
}
#endif /* defined(CONFIG_LOG) && !defined(ZEPHYR_LOG_MODE_IMMEDIATE) && \
* !defined(CONFIG_LOG_PROCESS_THREAD) && !defined(ZEPHYR_LOG_MODE_MINIMAL)
*/
#ifdef CONFIG_MCUBOOT_SERIAL
static void boot_serial_enter()
{
int rc;
#ifdef CONFIG_MCUBOOT_INDICATION_LED
io_led_set(1);
#endif
mcuboot_status_change(MCUBOOT_STATUS_SERIAL_DFU_ENTERED);
BOOT_LOG_INF("Enter the serial recovery mode");
rc = boot_console_init();
__ASSERT(rc == 0, "Error initializing boot console.\n");
boot_serial_start(&boot_funcs);
__ASSERT(0, "Bootloader serial process was terminated unexpectedly.\n");
}
#endif
int main(void)
{
struct boot_rsp rsp;
int rc;
FIH_DECLARE(fih_rc, FIH_FAILURE);
MCUBOOT_WATCHDOG_SETUP();
MCUBOOT_WATCHDOG_FEED();
#if !defined(MCUBOOT_DIRECT_XIP)
BOOT_LOG_INF("Starting bootloader");
#else
BOOT_LOG_INF("Starting Direct-XIP bootloader");
#endif
#ifdef CONFIG_MCUBOOT_INDICATION_LED
/* LED init */
io_led_init();
#endif
os_heap_init();
ZEPHYR_BOOT_LOG_START();
(void)rc;
mcuboot_status_change(MCUBOOT_STATUS_STARTUP);
#ifdef CONFIG_BOOT_SERIAL_ENTRANCE_GPIO
if (io_detect_pin() &&
!io_boot_skip_serial_recovery()) {
boot_serial_enter();
}
#endif
#ifdef CONFIG_BOOT_SERIAL_PIN_RESET
if (io_detect_pin_reset()) {
boot_serial_enter();
}
#endif
#if defined(CONFIG_BOOT_USB_DFU_GPIO)
if (io_detect_pin()) {
#ifdef CONFIG_MCUBOOT_INDICATION_LED
io_led_set(1);
#endif
mcuboot_status_change(MCUBOOT_STATUS_USB_DFU_ENTERED);
rc = usb_enable(NULL);
if (rc) {
BOOT_LOG_ERR("Cannot enable USB");
} else {
BOOT_LOG_INF("Waiting for USB DFU");
wait_for_usb_dfu(K_FOREVER);
BOOT_LOG_INF("USB DFU wait time elapsed");
}
}
#elif defined(CONFIG_BOOT_USB_DFU_WAIT)
rc = usb_enable(NULL);
if (rc) {
BOOT_LOG_ERR("Cannot enable USB");
} else {
BOOT_LOG_INF("Waiting for USB DFU");
mcuboot_status_change(MCUBOOT_STATUS_USB_DFU_WAITING);
wait_for_usb_dfu(K_MSEC(CONFIG_BOOT_USB_DFU_WAIT_DELAY_MS));
BOOT_LOG_INF("USB DFU wait time elapsed");
mcuboot_status_change(MCUBOOT_STATUS_USB_DFU_TIMED_OUT);
}
#endif
#ifdef CONFIG_BOOT_SERIAL_WAIT_FOR_DFU
/* Initialize the boot console, so we can already fill up our buffers while
* waiting for the boot image check to finish. This image check, can take
* some time, so it's better to reuse thistime to already receive the
* initial mcumgr command(s) into our buffers
*/
rc = boot_console_init();
int timeout_in_ms = CONFIG_BOOT_SERIAL_WAIT_FOR_DFU_TIMEOUT;
uint32_t start = k_uptime_get_32();
#ifdef CONFIG_MCUBOOT_INDICATION_LED
io_led_set(1);
#endif
#endif
FIH_CALL(boot_go, fih_rc, &rsp);
#ifdef CONFIG_BOOT_SERIAL_BOOT_MODE
if (io_detect_boot_mode()) {
/* Boot mode to stay in bootloader, clear status and enter serial
* recovery mode
*/
boot_serial_enter();
}
#endif
#ifdef CONFIG_BOOT_SERIAL_WAIT_FOR_DFU
timeout_in_ms -= (k_uptime_get_32() - start);
if( timeout_in_ms <= 0 ) {
/* at least one check if time was expired */
timeout_in_ms = 1;
}
boot_serial_check_start(&boot_funcs,timeout_in_ms);
#ifdef CONFIG_MCUBOOT_INDICATION_LED
io_led_set(0);
#endif
#endif
if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
BOOT_LOG_ERR("Unable to find bootable image");
mcuboot_status_change(MCUBOOT_STATUS_NO_BOOTABLE_IMAGE_FOUND);
#ifdef CONFIG_BOOT_SERIAL_NO_APPLICATION
/* No bootable image and configuration set to remain in serial
* recovery mode
*/
boot_serial_enter();
#endif
FIH_PANIC;
}
BOOT_LOG_INF("Bootloader chainload address offset: 0x%x",
rsp.br_image_off);
#if defined(MCUBOOT_DIRECT_XIP)
BOOT_LOG_INF("Jumping to the image slot");
#else
BOOT_LOG_INF("Jumping to the first image slot");
#endif
mcuboot_status_change(MCUBOOT_STATUS_BOOTABLE_IMAGE_FOUND);
ZEPHYR_BOOT_LOG_STOP();
do_boot(&rsp);
mcuboot_status_change(MCUBOOT_STATUS_BOOT_FAILED);
BOOT_LOG_ERR("Never should get here");
while (1)
;
}