mcuboot/boot/zephyr/main.c

509 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2012-2014 Wind River Systems, Inc.
* Copyright (c) 2020 Arm Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <zephyr.h>
#include <drivers/gpio.h>
#include <sys/__assert.h>
#include <drivers/flash.h>
#include <drivers/timer/system_timer.h>
#include <usb/usb_device.h>
#include <soc.h>
#include <linker/linker-defs.h>
#include "target.h"
#include "bootutil/bootutil_log.h"
#include "bootutil/image.h"
#include "bootutil/bootutil.h"
#include "bootutil/fault_injection_hardening.h"
#include "flash_map_backend/flash_map_backend.h"
#ifdef CONFIG_MCUBOOT_SERIAL
#include "boot_serial/boot_serial.h"
#include "serial_adapter/serial_adapter.h"
const struct boot_uart_funcs boot_funcs = {
.read = console_read,
.write = console_write
};
#endif
#ifdef CONFIG_BOOT_WAIT_FOR_USB_DFU
#include <usb/class/usb_dfu.h>
#endif
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
#include <arm_cleanup.h>
#endif
/* CONFIG_LOG_MINIMAL is the legacy Kconfig property,
* replaced by CONFIG_LOG_MODE_MINIMAL.
*/
#define ZEPHYR_LOG_MODE_MINIMAL (defined(CONFIG_LOG_MODE_MINIMAL) ||\
defined(CONFIG_LOG_MINIMAL))
#if defined(CONFIG_LOG) && !defined(CONFIG_LOG_IMMEDIATE) && \
!ZEPHYR_LOG_MODE_MINIMAL
#ifdef CONFIG_LOG_PROCESS_THREAD
#warning "The log internal thread for log processing can't transfer the log"\
"well for MCUBoot."
#else
#include <logging/log_ctrl.h>
#define BOOT_LOG_PROCESSING_INTERVAL K_MSEC(30) /* [ms] */
/* log are processing in custom routine */
K_THREAD_STACK_DEFINE(boot_log_stack, CONFIG_MCUBOOT_LOG_THREAD_STACK_SIZE);
struct k_thread boot_log_thread;
volatile bool boot_log_stop = false;
K_SEM_DEFINE(boot_log_sem, 1, 1);
/* log processing need to be initalized by the application */
#define ZEPHYR_BOOT_LOG_START() zephyr_boot_log_start()
#define ZEPHYR_BOOT_LOG_STOP() zephyr_boot_log_stop()
#endif /* CONFIG_LOG_PROCESS_THREAD */
#else
/* synchronous log mode doesn't need to be initalized by the application */
#define ZEPHYR_BOOT_LOG_START() do { } while (false)
#define ZEPHYR_BOOT_LOG_STOP() do { } while (false)
#endif /* defined(CONFIG_LOG) && !defined(CONFIG_LOG_IMMEDIATE) */
#ifdef CONFIG_SOC_FAMILY_NRF
#include <hal/nrf_power.h>
static inline bool boot_skip_serial_recovery()
{
#if NRF_POWER_HAS_RESETREAS
uint32_t rr = nrf_power_resetreas_get(NRF_POWER);
return !(rr == 0 || (rr & NRF_POWER_RESETREAS_RESETPIN_MASK));
#else
return false;
#endif
}
#else
static inline bool boot_skip_serial_recovery()
{
return false;
}
#endif
MCUBOOT_LOG_MODULE_REGISTER(mcuboot);
#ifdef CONFIG_MCUBOOT_INDICATION_LED
/*
* Devicetree helper macro which gets the 'flags' cell from a 'gpios'
* property, or returns 0 if the property has no 'flags' cell.
*/
#define FLAGS_OR_ZERO(node) \
COND_CODE_1(DT_PHA_HAS_CELL(node, gpios, flags), \
(DT_GPIO_FLAGS(node, gpios)), \
(0))
/*
* The led0 devicetree alias is optional. If present, we'll use it
* to turn on the LED whenever the button is pressed.
*/
#define LED0_NODE DT_ALIAS(bootloader_led0)
#if DT_NODE_HAS_STATUS(LED0_NODE, okay) && DT_NODE_HAS_PROP(LED0_NODE, gpios)
#define LED0_GPIO_LABEL DT_GPIO_LABEL(LED0_NODE, gpios)
#define LED0_GPIO_PIN DT_GPIO_PIN(LED0_NODE, gpios)
#define LED0_GPIO_FLAGS (GPIO_OUTPUT | FLAGS_OR_ZERO(LED0_NODE))
#else
/* A build error here means your board isn't set up to drive an LED. */
#error "Unsupported board: led0 devicetree alias is not defined"
#endif
const static struct device *led;
void led_init(void)
{
led = device_get_binding(LED0_GPIO_LABEL);
if (led == NULL) {
BOOT_LOG_ERR("Didn't find LED device %s\n", LED0_GPIO_LABEL);
return;
}
gpio_pin_configure(led, LED0_GPIO_PIN, LED0_GPIO_FLAGS);
gpio_pin_set(led, LED0_GPIO_PIN, 0);
}
#endif
void os_heap_init(void);
#if defined(CONFIG_ARM)
#ifdef CONFIG_SW_VECTOR_RELAY
extern void *_vector_table_pointer;
#endif
struct arm_vector_table {
uint32_t msp;
uint32_t reset;
};
extern void sys_clock_disable(void);
static void do_boot(struct boot_rsp *rsp)
{
struct arm_vector_table *vt;
uintptr_t flash_base;
int rc;
/* The beginning of the image is the ARM vector table, containing
* the initial stack pointer address and the reset vector
* consecutively. Manually set the stack pointer and jump into the
* reset vector
*/
rc = flash_device_base(rsp->br_flash_dev_id, &flash_base);
assert(rc == 0);
vt = (struct arm_vector_table *)(flash_base +
rsp->br_image_off +
rsp->br_hdr->ih_hdr_size);
irq_lock();
#ifdef CONFIG_SYS_CLOCK_EXISTS
sys_clock_disable();
#endif
#ifdef CONFIG_USB
/* Disable the USB to prevent it from firing interrupts */
usb_disable();
#endif
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
cleanup_arm_nvic(); /* cleanup NVIC registers */
#ifdef CONFIG_CPU_CORTEX_M7
/* Disable instruction cache and data cache before chain-load the application */
SCB_DisableDCache();
SCB_DisableICache();
#endif
#if CONFIG_CPU_HAS_ARM_MPU || CONFIG_CPU_HAS_NXP_MPU
z_arm_clear_arm_mpu_config();
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD) && \
defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
/* Reset limit registers to avoid inflicting stack overflow on image
* being booted.
*/
__set_PSPLIM(0);
__set_MSPLIM(0);
#endif
#endif /* CONFIG_MCUBOOT_CLEANUP_ARM_CORE */
#ifdef CONFIG_BOOT_INTR_VEC_RELOC
#if defined(CONFIG_SW_VECTOR_RELAY)
_vector_table_pointer = vt;
#ifdef CONFIG_CPU_CORTEX_M_HAS_VTOR
SCB->VTOR = (uint32_t)__vector_relay_table;
#endif
#elif defined(CONFIG_CPU_CORTEX_M_HAS_VTOR)
SCB->VTOR = (uint32_t)vt;
#endif /* CONFIG_SW_VECTOR_RELAY */
#else /* CONFIG_BOOT_INTR_VEC_RELOC */
#if defined(CONFIG_CPU_CORTEX_M_HAS_VTOR) && defined(CONFIG_SW_VECTOR_RELAY)
_vector_table_pointer = _vector_start;
SCB->VTOR = (uint32_t)__vector_relay_table;
#endif
#endif /* CONFIG_BOOT_INTR_VEC_RELOC */
__set_MSP(vt->msp);
#if CONFIG_MCUBOOT_CLEANUP_ARM_CORE
__set_CONTROL(0x00); /* application will configures core on its own */
__ISB();
#endif
((void (*)(void))vt->reset)();
}
#elif defined(CONFIG_XTENSA)
#define SRAM_BASE_ADDRESS 0xBE030000
static void copy_img_to_SRAM(int slot, unsigned int hdr_offset)
{
const struct flash_area *fap;
int area_id;
int rc;
unsigned char *dst = (unsigned char *)(SRAM_BASE_ADDRESS + hdr_offset);
BOOT_LOG_INF("Copying image to SRAM");
area_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
BOOT_LOG_ERR("flash_area_open failed with %d\n", rc);
goto done;
}
rc = flash_area_read(fap, hdr_offset, dst, fap->fa_size - hdr_offset);
if (rc != 0) {
BOOT_LOG_ERR("flash_area_read failed with %d\n", rc);
goto done;
}
done:
flash_area_close(fap);
}
/* Entry point (.ResetVector) is at the very beginning of the image.
* Simply copy the image to a suitable location and jump there.
*/
static void do_boot(struct boot_rsp *rsp)
{
void *start;
BOOT_LOG_INF("br_image_off = 0x%x\n", rsp->br_image_off);
BOOT_LOG_INF("ih_hdr_size = 0x%x\n", rsp->br_hdr->ih_hdr_size);
/* Copy from the flash to HP SRAM */
copy_img_to_SRAM(0, rsp->br_hdr->ih_hdr_size);
/* Jump to entry point */
start = (void *)(SRAM_BASE_ADDRESS + rsp->br_hdr->ih_hdr_size);
((void (*)(void))start)();
}
#else
/* Default: Assume entry point is at the very beginning of the image. Simply
* lock interrupts and jump there. This is the right thing to do for X86 and
* possibly other platforms.
*/
static void do_boot(struct boot_rsp *rsp)
{
uintptr_t flash_base;
void *start;
int rc;
rc = flash_device_base(rsp->br_flash_dev_id, &flash_base);
assert(rc == 0);
start = (void *)(flash_base + rsp->br_image_off +
rsp->br_hdr->ih_hdr_size);
/* Lock interrupts and dive into the entry point */
irq_lock();
((void (*)(void))start)();
}
#endif
#if defined(CONFIG_LOG) && !defined(CONFIG_LOG_IMMEDIATE) &&\
!defined(CONFIG_LOG_PROCESS_THREAD) && !ZEPHYR_LOG_MODE_MINIMAL
/* The log internal thread for log processing can't transfer log well as has too
* low priority.
* Dedicated thread for log processing below uses highest application
* priority. This allows to transmit all logs without adding k_sleep/k_yield
* anywhere else int the code.
*/
/* most simple log processing theread */
void boot_log_thread_func(void *dummy1, void *dummy2, void *dummy3)
{
(void)dummy1;
(void)dummy2;
(void)dummy3;
log_init();
while (1) {
if (log_process(false) == false) {
if (boot_log_stop) {
break;
}
k_sleep(BOOT_LOG_PROCESSING_INTERVAL);
}
}
k_sem_give(&boot_log_sem);
}
void zephyr_boot_log_start(void)
{
/* start logging thread */
k_thread_create(&boot_log_thread, boot_log_stack,
K_THREAD_STACK_SIZEOF(boot_log_stack),
boot_log_thread_func, NULL, NULL, NULL,
K_HIGHEST_APPLICATION_THREAD_PRIO, 0,
BOOT_LOG_PROCESSING_INTERVAL);
k_thread_name_set(&boot_log_thread, "logging");
}
void zephyr_boot_log_stop(void)
{
boot_log_stop = true;
/* wait until log procesing thread expired
* This can be reworked using a thread_join() API once a such will be
* available in zephyr.
* see https://github.com/zephyrproject-rtos/zephyr/issues/21500
*/
(void)k_sem_take(&boot_log_sem, K_FOREVER);
}
#endif/* defined(CONFIG_LOG) && !defined(CONFIG_LOG_IMMEDIATE) &&\
!defined(CONFIG_LOG_PROCESS_THREAD) */
void main(void)
{
struct boot_rsp rsp;
int rc;
fih_int fih_rc = FIH_FAILURE;
MCUBOOT_WATCHDOG_FEED();
BOOT_LOG_INF("Starting bootloader");
#ifdef CONFIG_MCUBOOT_INDICATION_LED
/* LED init */
led_init();
#endif
os_heap_init();
ZEPHYR_BOOT_LOG_START();
(void)rc;
#if (!defined(CONFIG_XTENSA) && defined(DT_CHOSEN_ZEPHYR_FLASH_CONTROLLER_LABEL))
if (!flash_device_get_binding(DT_CHOSEN_ZEPHYR_FLASH_CONTROLLER_LABEL)) {
BOOT_LOG_ERR("Flash device %s not found",
DT_CHOSEN_ZEPHYR_FLASH_CONTROLLER_LABEL);
while (1)
;
}
#elif (defined(CONFIG_XTENSA) && defined(JEDEC_SPI_NOR_0_LABEL))
if (!flash_device_get_binding(JEDEC_SPI_NOR_0_LABEL)) {
BOOT_LOG_ERR("Flash device %s not found", JEDEC_SPI_NOR_0_LABEL);
while (1)
;
}
#endif
#ifdef CONFIG_MCUBOOT_SERIAL
struct device const *detect_port;
uint32_t detect_value = !CONFIG_BOOT_SERIAL_DETECT_PIN_VAL;
detect_port = device_get_binding(CONFIG_BOOT_SERIAL_DETECT_PORT);
__ASSERT(detect_port, "Error: Bad port for boot serial detection.\n");
/* The default presence value is 0 which would normally be
* active-low, but historically the raw value was checked so we'll
* use the raw interface.
*/
rc = gpio_pin_configure(detect_port, CONFIG_BOOT_SERIAL_DETECT_PIN,
#ifdef GPIO_INPUT
GPIO_INPUT | GPIO_PULL_UP
#else
GPIO_DIR_IN | GPIO_PUD_PULL_UP
#endif
);
__ASSERT(rc == 0, "Error of boot detect pin initialization.\n");
#ifdef GPIO_INPUT
rc = gpio_pin_get_raw(detect_port, CONFIG_BOOT_SERIAL_DETECT_PIN);
detect_value = rc;
#else
rc = gpio_pin_read(detect_port, CONFIG_BOOT_SERIAL_DETECT_PIN,
&detect_value);
#endif
__ASSERT(rc >= 0, "Error of the reading the detect pin.\n");
if (detect_value == CONFIG_BOOT_SERIAL_DETECT_PIN_VAL &&
!boot_skip_serial_recovery()) {
#if CONFIG_BOOT_SERIAL_DETECT_DELAY > 0
k_sleep(K_MSEC(50));
/* Get the uptime for debounce purposes. */
int64_t timestamp = k_uptime_get();
for(;;) {
#ifdef GPIO_INPUT
rc = gpio_pin_get_raw(detect_port, CONFIG_BOOT_SERIAL_DETECT_PIN);
detect_value = rc;
#else
rc = gpio_pin_read(detect_port, CONFIG_BOOT_SERIAL_DETECT_PIN,
&detect_value);
#endif
__ASSERT(rc >= 0, "Error of the reading the detect pin.\n");
/* Get delta from when this started */
uint32_t delta = k_uptime_get() - timestamp;
/* If not pressed OR if pressed > debounce period stop loop*/
if( delta >= CONFIG_BOOT_SERIAL_DETECT_DELAY ||
detect_value != CONFIG_BOOT_SERIAL_DETECT_PIN_VAL ) {
break;
}
/* Delay 1 ms */
k_sleep(K_MSEC(1));
}
#endif
/* Then run DFU */
if (detect_value == CONFIG_BOOT_SERIAL_DETECT_PIN_VAL) {
#ifdef CONFIG_MCUBOOT_INDICATION_LED
gpio_pin_set(led, LED0_GPIO_PIN, 1);
#endif
BOOT_LOG_INF("Enter the serial recovery mode");
rc = boot_console_init();
__ASSERT(rc == 0, "Error initializing boot console.\n");
boot_serial_start(&boot_funcs);
__ASSERT(0, "Bootloader serial process was terminated unexpectedly.\n");
}
}
#endif
#ifdef CONFIG_BOOT_WAIT_FOR_USB_DFU
rc = usb_enable(NULL);
if (rc) {
BOOT_LOG_ERR("Cannot enable USB");
} else {
BOOT_LOG_INF("Waiting for USB DFU");
wait_for_usb_dfu();
BOOT_LOG_INF("USB DFU wait time elapsed");
}
#endif
FIH_CALL(boot_go, fih_rc, &rsp);
if (fih_not_eq(fih_rc, FIH_SUCCESS)) {
BOOT_LOG_ERR("Unable to find bootable image");
FIH_PANIC;
}
BOOT_LOG_INF("Bootloader chainload address offset: 0x%x",
rsp.br_image_off);
BOOT_LOG_INF("Jumping to the first image slot");
ZEPHYR_BOOT_LOG_STOP();
do_boot(&rsp);
BOOT_LOG_ERR("Never should get here");
while (1)
;
}