/**
@page RCC_ClockConfig RCC Clock Config example
@verbatim
******************** (C) COPYRIGHT 2016 STMicroelectronics *******************
* @file RCC/RCC_ClockConfig/readme.txt
* @author MCD Application Team
* @brief Description of the RCC Clock Config example.
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@endverbatim
@par Example Description
Configuration of the system clock (SYSCLK) and modification of the clock settings in Run mode, using the RCC HAL API.
In this example, after startup SYSCLK is configured to the max frequency using the PLL with
HSI48 as clock source, the User push-button (connected to EXTI_Line0) will be
used to change the PLL source:
- from HSI to HSI48
- from HSI48 to to HSI
Each time the User push-button is pressed; EXTI_Line0 interrupt is generated and in the ISR
the PLL oscillator source is checked using __HAL_RCC_GET_PLL_OSCSOURCE() macro:
- If the HSI oscillator is selected as PLL source, the following steps will be followed to switch
the PLL source to HSI48 oscillator:
a- Switch the system clock source to HSI to allow modification of the PLL configuration
b- Enable HSI48 Oscillator, select it as PLL source and finally activate the PLL
c- Select the PLL as system clock source and configure the HCLK and PCLK1 clocks dividers
d- Disable the HSI oscillator (optional, if the HSI is no more needed by the application)
- If the HSI48 oscillator is selected as PLL source, the following steps will be followed to switch
the PLL source to HSI oscillator:
a- Switch the system clock source to HSI48 to allow modification of the PLL configuration
b- Enable HSI Oscillator, select it as PLL source and finally activate the PLL
c- Select the PLL as system clock source and configure the HCLK and PCLK1 clocks dividers
d- Disable the HSI48 oscillator (optional, if the HSI48 is no more needed by the application)
In this example the SYSCLK is outputted on the MCO1 pin(PA.08).
LED3 is toggled with a timing defined by the HAL_Delay() API.
@note Care must be taken when using HAL_Delay(), this function provides accurate delay (in milliseconds)
based on variable incremented in SysTick ISR. This implies that if HAL_Delay() is called from
a peripheral ISR process, then the SysTick interrupt must have higher priority (numerically lower)
than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
To change the SysTick interrupt priority you have to use HAL_NVIC_SetPriority() function.
@note The application need to ensure that the SysTick time base is always set to 1 millisecond
to have correct HAL operation.
@par Directory contents
- RCC/RCC_ClockConfig/Inc/stm32f0xx_hal_conf.h HAL configuration file
- RCC/RCC_ClockConfig/Inc/stm32f0xx_it.h Interrupt handlers header file
- RCC/RCC_ClockConfig/Inc/main.h Header for main.c module
- RCC/RCC_ClockConfig/Src/stm32f0xx_it.c Interrupt handlers
- RCC/RCC_ClockConfig/Src/main.c Main program
- RCC/RCC_ClockConfig/Src/system_stm32f0xx.c STM32F0xx system source file
@par Hardware and Software environment
- This example runs on STM32F072xB devices.
- This example has been tested with STM32F072B-Discovery RevC
board and can be easily tailored to any other supported device
and development board.
@par How to use it ?
In order to make the program work, you must do the following :
- Open your preferred toolchain
- Rebuild all files and load your image into target memory
- Run the example
*/