113 lines
5.5 KiB
Markdown
113 lines
5.5 KiB
Markdown
# Caffe SSD 目标检测
|
|
|
|
基于 Ubuntu16.04 和 Python2.7。
|
|
|
|
## 1.Installation
|
|
|
|
按《Ubuntu 初始配置》中的方法来安装开发工具。
|
|
|
|
1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT
|
|
|
|
```bash
|
|
git clone https://github.com/weiliu89/caffe.git
|
|
cd caffe
|
|
git checkout ssd
|
|
```
|
|
|
|
2. Build the code. Please follow Caffe instruction to install all necessary packages and build it.
|
|
|
|
```bash
|
|
# Modify Makefile.config according to your Caffe installation.
|
|
cp Makefile.config.example Makefile.config
|
|
# 通过去除 Makefile.config 中“CPU_ONLY := 1”前面的 “#” 号可选择编译 CPU 版本的 Caffe
|
|
make -j8
|
|
# Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
|
|
make py
|
|
make test -j8
|
|
# (Optional)
|
|
make runtest -j8
|
|
cd caffe/python
|
|
for req in $(cat requirements.txt); do pip install $req; done
|
|
pip install -r requirements.txt
|
|
export PATHONPATH=$PATHONPATH:$CAFFE_ROOT/python/caffe
|
|
make pycaffe
|
|
# 验证 pycaffe 接口
|
|
python
|
|
>>>import caffe
|
|
>>>exit()
|
|
```
|
|
|
|
## 2.Preparation
|
|
|
|
1. Download [fully convolutional reduced (atrous) VGGNet](https://gist.github.com/weiliu89/2ed6e13bfd5b57cf81d6). By default, we assume the model is stored in $CAFFE_ROOT/models/VGGNet/
|
|
2. Download [VOC2007 and VOC2012 dataset](https://pjreddie.com/projects/pascal-voc-dataset-mirror/). By default, we assume the data is stored in $HOME/data/
|
|
|
|
```bash
|
|
# Download the data.
|
|
cd $HOME/data
|
|
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
|
|
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
|
|
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
|
|
# Extract the data.
|
|
tar -xvf VOCtrainval_11-May-2012.tar
|
|
tar -xvf VOCtrainval_06-Nov-2007.tar
|
|
tar -xvf VOCtest_06-Nov-2007.tar
|
|
```
|
|
|
|
3. Create the LMDB file.
|
|
|
|
## 3.Train/Eval
|
|
|
|
1. Train your model and evaluate the model on the fly.
|
|
|
|
```bash
|
|
# It will create model definition files and save snapshot models in:
|
|
# - $CAFFE_ROOT/models/VGGNet/VOC0712/SSD_300x300/
|
|
# and job file, log file, and the python script in:
|
|
# - $CAFFE_ROOT/jobs/VGGNet/VOC0712/SSD_300x300/
|
|
# and save temporary evaluation results in:
|
|
# - $HOME/data/VOCdevkit/results/VOC2007/SSD_300x300/
|
|
# It should reach 77.* mAP at 120k iterations.
|
|
python examples/ssd/ssd_pascal.py
|
|
```
|
|
|
|
If you don't have time to train your model, you can download a pre-trained model at [here](https://drive.google.com/open?id=0BzKzrI_SkD1_WVVTSmQxU0dVRzA).
|
|
|
|
2. Evaluate the most recent snapshot.
|
|
|
|
```bash
|
|
# If you would like to test a model you trained, you can do:
|
|
python examples/ssd/score_ssd_pascal.py
|
|
```
|
|
|
|
3. Test your model using a webcam. Note: press "esc" to stop.
|
|
|
|
```bash
|
|
# If you would like to attach a webcam to a model you trained, you can do:
|
|
python examples/ssd/ssd_pascal_webcam.py
|
|
```
|
|
|
|
[Here](https://drive.google.com/file/d/0BzKzrI_SkD1_R09NcjM1eElLcWc/view) is a demo video of running a SSD500 model trained on [MSCOCO](http://mscoco.org/) dataset.
|
|
|
|
4. Check out [examples/ssd_detect.ipynb](https://hub.fastgit.org/weiliu89/caffe/blob/ssd/examples/ssd_detect.ipynb) or [examples/ssd/ssd_detect.cpp](https://hub.fastgit.org/weiliu89/caffe/blob/ssd/examples/ssd/ssd_detect.cpp) on how to detect objects using a SSD model. Check out [examples/ssd/plot_detections.py](https://hub.fastgit.org/weiliu89/caffe/blob/ssd/examples/ssd/plot_detections.py) on how to plot detection results output by ssd_detect.cpp.
|
|
5. To train on other dataset, please refer to data/OTHERDATASET for more details. We currently add support for COCO and ILSVRC2016. We recommend using [examples/ssd.ipynb](https://hub.fastgit.org/weiliu89/caffe/blob/ssd/examples/ssd_detect.ipynb) to check whether the new dataset is prepared correctly.
|
|
|
|
## 4.Models
|
|
|
|
We have provided the latest models that are trained from different datasets. To help reproduce the results in [Table 6](https://arxiv.org/pdf/1512.02325v4.pdf), most models contain a pretrained `.caffemodel` file, many `.prototxt` files, and python scripts.
|
|
|
|
1. PASCAL VOC models:
|
|
* 07+12: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_WVVTSmQxU0dVRzA), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_ZDIxVHBEcUNBb2s)
|
|
* 07++12: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_WnR2T1BGVWlCZHM), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_MjFjNTlnempHNWs)
|
|
* COCO[1]: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_NDlVeFJDc2tIU1k), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_TW4wTC14aDdCTDQ)
|
|
* 07+12+COCO: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_UFpoU01yLS1SaG8), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_X3ZXQUUtM0xNeEk)
|
|
* 07++12+COCO: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_TkFPTEQ1Z091SUE), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_NVVNdWdYNEh1WTA)
|
|
|
|
2. COCO models:
|
|
* trainval35k: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_dUY1Ml9GRTFpUWc), [SSD512*](https://drive.google.com/open?id=0BzKzrI_SkD1_dlJpZHJzOXd3MTg)
|
|
|
|
3. ILSVRC models:
|
|
* trainval1: [SSD300*](https://drive.google.com/open?id=0BzKzrI_SkD1_a2NKQ2d1d043VXM), [SSD500](https://drive.google.com/open?id=0BzKzrI_SkD1_X2ZCLVgwLTgzaTQ)
|
|
|
|
[1]We use [`examples/convert_model.ipynb`](https://github.com/weiliu89/caffe/blob/ssd/examples/convert_model.ipynb) to extract a VOC model from a pretrained COCO model.
|