192 lines
5.0 KiB
Markdown
192 lines
5.0 KiB
Markdown
---
|
||
layout: post
|
||
title: "拉格朗日插值"
|
||
subtitle: ""
|
||
description: "给出拉格朗日多项式插值的推导过程和标准公式。"
|
||
excerpt: "通过简单的推导过程和示例程序演示拉格朗日多项式插值。"
|
||
date: 2022-09-08 12:50:00
|
||
author: "Rick Chan"
|
||
tags: ["DSP", "Lagrange", "Interpolation", "Polynomial"]
|
||
categories: ["Algorithm"]
|
||
published: true
|
||
math: true
|
||
---
|
||
|
||
Fit N+1 points with an $N^{th}$ degree polynomial
|
||
|
||
![Fit N+1 points](img/拉格朗日插值/001.png)
|
||
|
||
f(x) = exact function of which only N+1 discrete values are known and used to estab-
|
||
lish an interpolating or approximating function g(x).
|
||
|
||
g(x) = approximating or interpolating function. This function will pass through all
|
||
specified N+1 interpolation points (also referred to as **data points** or **nodes**).
|
||
|
||
The interpolation points or nodes are given as:
|
||
|
||
$$\begin{gather*}
|
||
x_0 & f(x_0)\equiv f_0 \\
|
||
x_1 & f(x_1)\equiv f_1 \\
|
||
x_2 & f(x_2)\equiv f_2 \\
|
||
... \\
|
||
x_N & f(x_N)\equiv f_N
|
||
\end{gather*}$$
|
||
|
||
There exists only one $N^{th}$ degree polynomial that passes through a given set of N+1 points. It’s form is (expressed as a power series):
|
||
|
||
$$g(x)=a_0+a_1x+a_2x^2+a_3x^3+...+a_Nx^N$$
|
||
|
||
where $a_i=\text{unknown coefficients}$, $i=0,N\text{(N+1 coefficients)}$.
|
||
|
||
No matter how we derive the $N^{th}$ degree polynomial:
|
||
|
||
* Fitting power series
|
||
* Lagrange interpolating functions
|
||
* Newton forward or backward interpolation
|
||
|
||
The resulting polynomial will always be the same!
|
||
|
||
## Power Series Fitting to Define Lagrange Interpolation
|
||
|
||
g(x) must match f(x) at the selected data points:
|
||
|
||
$$\begin{gather*}
|
||
g(x_0)=f_0 \to a_0+a_1x_0+a_2x_0^2+...+a_Nx_0^N=f_0 \\
|
||
g(x_1)=f_1 \to a_0+a_1x_1+a_2x_1^2+...+a_Nx_1^N=f_1 \\
|
||
... \\
|
||
g(x_N)=f_N \to a_0+a_1x_N+a_2x_N^2+...+a_Nx_N^N=f_N \\
|
||
\end{gather*}$$
|
||
|
||
Solve set of simultaneous equations:
|
||
|
||
$$\begin{bmatrix}
|
||
1 & x_0 & x_0^2 & ... & x_0^N \\
|
||
1 & x_1 & x_1^2 & ... & x_1^N \\
|
||
... \\
|
||
1 & x_N & x_N^2 & ... & x_N^N
|
||
\end{bmatrix} \begin{bmatrix}
|
||
a_0 \\ a_1 \\ ... \\ a_N
|
||
\end{bmatrix} = \begin{bmatrix}
|
||
f_0 \\ f_1 \\ ... \\ f_N
|
||
\end{bmatrix}$$
|
||
|
||
It is relatively computationally costly to solve the coefficients of the interpolating function g(x) (i.e. you need to program a solution to these equations).
|
||
|
||
## Lagrange Interpolation Using Basis Functions
|
||
|
||
We note that in general:
|
||
|
||
$$g(x_i)=f_i$$
|
||
|
||
Let
|
||
|
||
$$g(x)=\sum_{i=0}^Nf_iV_i(x)$$
|
||
|
||
where $V_i(x)$ polynomial of degree associated with each node such that
|
||
|
||
$$\begin{equation*}
|
||
V_i(x_j)\equiv \begin{cases}
|
||
0 & i\neq j \\
|
||
1 & i= j
|
||
\end{cases}
|
||
\end{equation*}$$
|
||
|
||
For example if we have 5 interpolation points (or nodes)
|
||
|
||
$$g(x_3)=f_0V_0(x_3)+f_1V_1(x_3)+f_2V_2(x_3)+f_3V_3(x_3)+f_4V_4(x_3)$$
|
||
|
||
Using the definition for $V_i(x_j)$:
|
||
|
||
$$\begin{gather*}
|
||
V_0(x_3)=0 \\
|
||
V_1(x_3)=0 \\
|
||
V_2(x_3)=0 \\
|
||
V_3(x_3)=1 \\
|
||
V_4(x_4)=0
|
||
\end{gather*}$$
|
||
|
||
we have:
|
||
|
||
$$g(x_3)=f_3$$
|
||
|
||
How do we construct $V_i(x)$?
|
||
|
||
* Degree N
|
||
* Roots at $x_0,x_1,x_2,...,x_{i-1},...,x_N$ (at all nodes except $x_i$)
|
||
* $V_i(x_i)=1$
|
||
|
||
Let $W_i(x)=(x-x_0)(x-x_1)(x-x_2)...(x-x_{i+1})...(x-x_N)$
|
||
|
||
* The function $W_i$ is such that we do have the required roots, i.e. it equals zeros at nodes $x_0,x_1,x_2,...,x_N$ except at node $x_i$
|
||
* Degree of $W_i(x)$ is N
|
||
* However $W_i(x)$ in the form presented will not equal to unity at $x_i$
|
||
|
||
We normalize $W_i(x)$ and define the Lagrange basis functions $V_i(x)$:
|
||
|
||
$$V_i(x)=\frac{(x-x_0)(x-x_1)(x-x_2)...(x-x_{i-1})(x-x_{i+1})...(x-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)}$$
|
||
|
||
Now we have $V_i(x)$ such that $V_i(x_i)$ equals:
|
||
|
||
$$\begin{gather*}
|
||
V_i(x)=\frac{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(1)(x_i-x_{i+1})...(x_i-x_N)}{(x_i-x_0)(x_i-x_1)(x_i-x_2)...(x_i-x_{i-1})(x_i-x_{i+1})...(x_i-x_N)} \\
|
||
\\
|
||
\to V_i(x_i)=1
|
||
\end{gather*}$$
|
||
|
||
We alos satisfy $V_i(x_j)=0$ for $i\neq j$
|
||
|
||
e.g.
|
||
|
||
$$V_1(x_2)=\frac{(x_2-x_0)(1)(x_2-x_2)(x_2-x_3)...(x_2-x_N)}{(x_1-x_0)(1)(x_1-x_2)(x_1-x_3)...(x_1-x_N)}=0$$
|
||
|
||
The general form of the interpolating function g(x) with the specified form of $V_i(x)$ is:
|
||
|
||
$$g(x)=\sum_{i=0}^{N}f_iV_i(x)$$
|
||
|
||
* The sum of polynomials of degree N is also polynomial of degree N
|
||
* g(x) is equivalent to fitting the power series and computing coefficients $a_0,...,a_N$
|
||
|
||
## Lagrange Linear Interpolation Using Basis Functions
|
||
|
||
Linear Lagrange (N=1) is the simplest form of Lagrange Interpolation:
|
||
|
||
$$\begin{gather*}
|
||
g(x)=\sum_{i=0}^{1}f_iV_i(x) \\
|
||
\to g(x)=f_0V_0(x)+f_1V_1(x)
|
||
\end{gather*}$$
|
||
|
||
where
|
||
|
||
$$V_0(x)=\frac{(x-x_1)}{(x_0-x_1)}=\frac{(x_1-x)}{(x_1-x_0)}$$
|
||
|
||
and
|
||
|
||
$$V_1(x)=\frac{(x-x_0)}{(x_1-x_0)}$$
|
||
|
||
## Example
|
||
|
||
Given the following data:
|
||
|
||
$$\begin{gather*}
|
||
x_0=2 & f_0=1.5 \\
|
||
x_1=5 & f_1=4.0
|
||
\end{gather*}$$
|
||
|
||
Find the linear interpolating function g(x)
|
||
|
||
Lagrange basis functions are:
|
||
|
||
$$\begin{gather*}
|
||
V_0(x)=\frac{x-5}{-3} \\
|
||
\\
|
||
V_1(x)=\frac{x-2}{3}
|
||
\end{gather*}$$
|
||
|
||
Interpolating function g(x) is:
|
||
|
||
$$g(x)=1.5V_0(x)+4.0V_1(x)$$
|
||
|
||
## 外部参考资料
|
||
|
||
1. [原文](https://coast.nd.edu/jjwteach/www/www/30125/pdfnotes/lecture3_6v13.pdf)
|