2015-12-27 21:17:38 +08:00
|
|
|
# OpenFace tests, run with `nosetests-2.7 -v -d test.py`
|
|
|
|
#
|
2015-12-23 11:41:04 +08:00
|
|
|
# Copyright 2015 Carnegie Mellon University
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import os
|
2016-01-12 01:00:14 +08:00
|
|
|
import re
|
|
|
|
import shutil
|
2015-12-23 11:41:04 +08:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
np.set_printoptions(precision=2)
|
|
|
|
from numpy.linalg import norm
|
|
|
|
|
|
|
|
import scipy
|
|
|
|
import scipy.spatial
|
|
|
|
|
|
|
|
import openface
|
|
|
|
|
|
|
|
from subprocess import Popen, PIPE
|
|
|
|
|
|
|
|
fileDir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
modelDir = os.path.join(fileDir, 'models')
|
|
|
|
dlibModelDir = os.path.join(modelDir, 'dlib')
|
|
|
|
openfaceModelDir = os.path.join(modelDir, 'openface')
|
|
|
|
|
2016-01-12 01:00:14 +08:00
|
|
|
exampleImages = os.path.join(fileDir, 'images', 'examples')
|
|
|
|
lfwSubset = os.path.join(fileDir, 'data', 'lfw-subset')
|
|
|
|
|
2015-12-23 11:41:04 +08:00
|
|
|
dlibFacePredictor = os.path.join(dlibModelDir,
|
|
|
|
"shape_predictor_68_face_landmarks.dat")
|
2016-01-08 07:28:05 +08:00
|
|
|
nn4_v1_model = os.path.join(openfaceModelDir, 'nn4.v1.t7')
|
|
|
|
nn4_v2_model = os.path.join(openfaceModelDir, 'nn4.v2.t7')
|
2015-12-23 11:41:04 +08:00
|
|
|
imgDim = 96
|
|
|
|
|
2015-12-30 08:57:29 +08:00
|
|
|
align = openface.AlignDlib(dlibFacePredictor)
|
2016-01-08 07:28:05 +08:00
|
|
|
nn4_v1 = openface.TorchNeuralNet(nn4_v1_model, imgDim=imgDim)
|
|
|
|
nn4_v2 = openface.TorchNeuralNet(nn4_v2_model, imgDim=imgDim)
|
2015-12-23 11:41:04 +08:00
|
|
|
|
2015-12-23 12:11:15 +08:00
|
|
|
|
2016-01-08 07:28:05 +08:00
|
|
|
def test_v1_pipeline():
|
2016-01-12 01:00:14 +08:00
|
|
|
imgPath = os.path.join(exampleImages, 'lennon-1.jpg')
|
2015-12-23 11:41:04 +08:00
|
|
|
bgrImg = cv2.imread(imgPath)
|
|
|
|
if bgrImg is None:
|
|
|
|
raise Exception("Unable to load image: {}".format(imgPath))
|
|
|
|
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
|
|
|
|
assert np.isclose(norm(rgbImg), 11.1355)
|
|
|
|
|
|
|
|
bb = align.getLargestFaceBoundingBox(rgbImg)
|
|
|
|
assert bb.left() == 341
|
|
|
|
assert bb.right() == 1006
|
|
|
|
assert bb.top() == 193
|
|
|
|
assert bb.bottom() == 859
|
|
|
|
|
2016-01-08 07:28:05 +08:00
|
|
|
# Should be INNER_EYES_AND_BOTTOM_LIP by default.
|
2015-12-31 02:14:30 +08:00
|
|
|
alignedFace = align.align(imgDim, rgbImg, bb)
|
2015-12-23 11:41:04 +08:00
|
|
|
assert np.isclose(norm(alignedFace), 8.30662)
|
|
|
|
|
2016-01-08 07:28:05 +08:00
|
|
|
alignedFace_alt = align.align(imgDim, rgbImg, bb,
|
|
|
|
landmarkIndices=openface.AlignDlib.INNER_EYES_AND_BOTTOM_LIP)
|
|
|
|
assert np.isclose(norm(alignedFace), norm(alignedFace_alt))
|
|
|
|
|
|
|
|
|
|
|
|
def test_v2_pipeline():
|
2016-01-12 01:00:14 +08:00
|
|
|
imgPath = os.path.join(exampleImages, 'lennon-1.jpg')
|
2016-01-08 07:28:05 +08:00
|
|
|
bgrImg = cv2.imread(imgPath)
|
|
|
|
if bgrImg is None:
|
|
|
|
raise Exception("Unable to load image: {}".format(imgPath))
|
|
|
|
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
|
|
|
|
assert np.isclose(norm(rgbImg), 11.1355)
|
|
|
|
|
|
|
|
bb = align.getLargestFaceBoundingBox(rgbImg)
|
|
|
|
assert bb.left() == 341
|
|
|
|
assert bb.right() == 1006
|
|
|
|
assert bb.top() == 193
|
|
|
|
assert bb.bottom() == 859
|
|
|
|
|
|
|
|
alignedFace = align.align(imgDim, rgbImg, bb,
|
|
|
|
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
|
|
|
|
assert np.isclose(norm(alignedFace), 7.61577)
|
|
|
|
|
|
|
|
rep = nn4_v2.forward(alignedFace)
|
2015-12-25 00:07:19 +08:00
|
|
|
cosDist = scipy.spatial.distance.cosine(rep, np.ones(128))
|
2016-01-08 07:28:05 +08:00
|
|
|
assert np.isclose(cosDist, 0.981229293936)
|
2015-12-23 11:41:04 +08:00
|
|
|
|
2015-12-23 12:11:15 +08:00
|
|
|
|
2015-12-23 11:41:04 +08:00
|
|
|
def test_compare_demo():
|
2015-12-23 12:09:35 +08:00
|
|
|
cmd = ['python2', os.path.join(fileDir, 'demos', 'compare.py'),
|
2016-01-12 01:00:14 +08:00
|
|
|
os.path.join(exampleImages, 'lennon-1.jpg'),
|
|
|
|
os.path.join(exampleImages, 'lennon-2.jpg')]
|
2015-12-23 11:41:04 +08:00
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
2016-01-08 07:28:05 +08:00
|
|
|
print(out, err)
|
|
|
|
assert "0.463" in out
|
2015-12-23 11:41:04 +08:00
|
|
|
|
2015-12-23 12:11:15 +08:00
|
|
|
|
2016-01-12 01:00:14 +08:00
|
|
|
def test_classification_demo_pretrained():
|
2015-12-23 12:09:35 +08:00
|
|
|
cmd = ['python2', os.path.join(fileDir, 'demos', 'classifier.py'),
|
2015-12-23 11:41:04 +08:00
|
|
|
'infer',
|
2015-12-23 12:09:35 +08:00
|
|
|
os.path.join(fileDir, 'models', 'openface',
|
2016-01-08 07:28:05 +08:00
|
|
|
'celeb-classifier.nn4.v2.pkl'),
|
2016-01-12 01:00:14 +08:00
|
|
|
os.path.join(exampleImages, 'carell.jpg')]
|
2015-12-23 11:41:04 +08:00
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
2016-01-08 07:28:05 +08:00
|
|
|
print(out, err)
|
|
|
|
assert "Predict SteveCarell with 0.89 confidence." in out
|
2016-01-12 01:00:14 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_classification_demo_training():
|
|
|
|
# Get lfw-subset by running ./data/download-lfw-subset.sh
|
|
|
|
assert os.path.isdir(lfwSubset)
|
|
|
|
|
|
|
|
cmd = ['python2', os.path.join(fileDir, 'util', 'align-dlib.py'),
|
|
|
|
os.path.join(lfwSubset, 'raw'), 'align', 'outerEyesAndNose',
|
|
|
|
os.path.join(lfwSubset, 'aligned')]
|
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
|
|
|
assert p.returncode == 0
|
|
|
|
|
|
|
|
cmd = ['th', './batch-represent/main.lua',
|
|
|
|
'-data', os.path.join(lfwSubset, 'aligned'),
|
|
|
|
'-outDir', os.path.join(lfwSubset, 'reps')]
|
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
|
|
|
assert p.returncode == 0
|
|
|
|
|
|
|
|
cmd = ['python2', os.path.join(fileDir, 'demos', 'classifier.py'),
|
|
|
|
'train',
|
|
|
|
os.path.join(lfwSubset, 'reps')]
|
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
|
|
|
assert p.returncode == 0
|
|
|
|
|
|
|
|
cmd = ['python2', os.path.join(fileDir, 'demos', 'classifier.py'),
|
|
|
|
'infer',
|
|
|
|
os.path.join(lfwSubset, 'reps', 'classifier.pkl'),
|
|
|
|
os.path.join(lfwSubset, 'raw', 'Adrien_Brody', 'Adrien_Brody_0001.jpg')]
|
|
|
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
|
|
|
(out, err) = p.communicate()
|
|
|
|
print(out, err)
|
|
|
|
m = re.search('Predict (.*) with (.*) confidence', out)
|
|
|
|
assert m is not None
|
|
|
|
assert m.group(1) == 'Adrien_Brody'
|
|
|
|
assert float(m.group(2)) >= 0.80
|
|
|
|
|
|
|
|
shutil.rmtree(os.path.join(lfwSubset, 'aligned'))
|
|
|
|
shutil.rmtree(os.path.join(lfwSubset, 'reps'))
|