90 lines
2.7 KiB
Python
90 lines
2.7 KiB
Python
|
# Copyright 2015 Carnegie Mellon University
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
import cv2
|
||
|
import openface
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
np.set_printoptions(precision=2)
|
||
|
from numpy.linalg import norm
|
||
|
|
||
|
import scipy
|
||
|
import scipy.spatial
|
||
|
|
||
|
import time
|
||
|
|
||
|
import openface
|
||
|
import openface.helper
|
||
|
from openface.data import iterImgs
|
||
|
from openface.alignment import NaiveDlib # Depends on dlib.
|
||
|
|
||
|
from subprocess import Popen, PIPE
|
||
|
|
||
|
import sys
|
||
|
fileDir = os.path.dirname(os.path.realpath(__file__))
|
||
|
|
||
|
modelDir = os.path.join(fileDir, 'models')
|
||
|
dlibModelDir = os.path.join(modelDir, 'dlib')
|
||
|
openfaceModelDir = os.path.join(modelDir, 'openface')
|
||
|
|
||
|
dlibFacePredictor = os.path.join(dlibModelDir,
|
||
|
"shape_predictor_68_face_landmarks.dat")
|
||
|
networkModel = os.path.join(openfaceModelDir, 'nn4.v1.t7')
|
||
|
imgDim = 96
|
||
|
|
||
|
align = NaiveDlib(dlibFacePredictor)
|
||
|
net = openface.TorchWrap(networkModel, imgDim=imgDim)
|
||
|
|
||
|
def test_pipeline():
|
||
|
imgPath = os.path.join('images', 'examples', 'lennon-1.jpg')
|
||
|
bgrImg = cv2.imread(imgPath)
|
||
|
if bgrImg is None:
|
||
|
raise Exception("Unable to load image: {}".format(imgPath))
|
||
|
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
|
||
|
assert np.isclose(norm(rgbImg), 11.1355)
|
||
|
|
||
|
bb = align.getLargestFaceBoundingBox(rgbImg)
|
||
|
assert bb.left() == 341
|
||
|
assert bb.right() == 1006
|
||
|
assert bb.top() == 193
|
||
|
assert bb.bottom() == 859
|
||
|
|
||
|
alignedFace = align.alignImg("affine", imgDim, rgbImg, bb)
|
||
|
assert np.isclose(norm(alignedFace), 8.30662)
|
||
|
|
||
|
rep = net.forwardImage(alignedFace)
|
||
|
assert np.isclose(scipy.spatial.distance.cosine(rep, np.ones(128)),
|
||
|
1.01860434258)
|
||
|
|
||
|
def test_compare_demo():
|
||
|
cmd = ['python2', './demos/compare.py',
|
||
|
'images/examples/lennon-1.jpg',
|
||
|
'images/examples/lennon-2.jpg']
|
||
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||
|
(out, err) = p.communicate()
|
||
|
print(err)
|
||
|
assert "0.298" in out
|
||
|
|
||
|
def test_classification_demo():
|
||
|
cmd = ['python2', './demos/classifier.py',
|
||
|
'infer',
|
||
|
'./models/openface/celeb-classifier.nn4.v1.pkl',
|
||
|
'images/examples/carell.jpg']
|
||
|
p = Popen(cmd, stdout=PIPE, stderr=PIPE)
|
||
|
(out, err) = p.communicate()
|
||
|
print(err)
|
||
|
assert "Predict SteveCarell with 0.96 confidence." in out
|