mirror of https://github.com/davisking/dlib.git
A little bit of cleanup
This commit is contained in:
parent
07febbc9de
commit
3a0a63da39
|
@ -1,8 +1,11 @@
|
||||||
#!/usr/bin/python
|
#!/usr/bin/python
|
||||||
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||||
#
|
#
|
||||||
# This example shows how faces are jittered and data augmentation using dlib's disturb_colors
|
# This example shows how faces were jittered and augmented to create training
|
||||||
# takes place during the training of a face recognition model using metric learning.
|
# data for dlib's face recognition model. It takes an input image and
|
||||||
|
# disturbs the colors as well as applies random translations, rotations, and
|
||||||
|
# scaling.
|
||||||
|
|
||||||
#
|
#
|
||||||
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
|
# COMPILING/INSTALLING THE DLIB PYTHON INTERFACE
|
||||||
# You can install dlib using the command:
|
# You can install dlib using the command:
|
||||||
|
@ -25,7 +28,6 @@
|
||||||
# Also note that this example requires OpenCV and Numpy which can be installed
|
# Also note that this example requires OpenCV and Numpy which can be installed
|
||||||
# via the command:
|
# via the command:
|
||||||
# pip install opencv-python numpy
|
# pip install opencv-python numpy
|
||||||
# Or downloaded from http://opencv.org/releases.html
|
|
||||||
#
|
#
|
||||||
# The image file used in this example is in the public domain:
|
# The image file used in this example is in the public domain:
|
||||||
# https://commons.wikimedia.org/wiki/File:Tom_Cruise_avp_2014_4.jpg
|
# https://commons.wikimedia.org/wiki/File:Tom_Cruise_avp_2014_4.jpg
|
||||||
|
@ -81,16 +83,15 @@ for detection in dets:
|
||||||
|
|
||||||
# Get the aligned face image and show it
|
# Get the aligned face image and show it
|
||||||
image = dlib.get_face_chip(img, faces[0], size=320)
|
image = dlib.get_face_chip(img, faces[0], size=320)
|
||||||
cv_rgb_image = np.array(image).astype(np.uint8)
|
cv_bgr_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
||||||
cv_bgr_img = cv2.cvtColor(cv_rgb_image, cv2.COLOR_RGB2BGR)
|
|
||||||
cv2.imshow('image',cv_bgr_img)
|
cv2.imshow('image',cv_bgr_img)
|
||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
|
|
||||||
# Show 5 jittered images without data augmentation
|
# Show 5 jittered images without data augmentation
|
||||||
jittered_images = dlib.jitter_image(cv_rgb_image, num_jitters=5)
|
jittered_images = dlib.jitter_image(image, num_jitters=5)
|
||||||
show_jittered_images(jittered_images)
|
show_jittered_images(jittered_images)
|
||||||
|
|
||||||
# Show 5 jittered images with data augmentation
|
# Show 5 jittered images with data augmentation
|
||||||
jittered_images = dlib.jitter_image(cv_rgb_image, num_jitters=5, disturb_colors=True)
|
jittered_images = dlib.jitter_image(image, num_jitters=5, disturb_colors=True)
|
||||||
show_jittered_images(jittered_images)
|
show_jittered_images(jittered_images)
|
||||||
cv2.destroyAllWindows()
|
cv2.destroyAllWindows()
|
Loading…
Reference in New Issue