diff --git a/python_examples/face_jitter.py b/python_examples/face_jitter.py index 26ad6b2f6..6766ed64b 100755 --- a/python_examples/face_jitter.py +++ b/python_examples/face_jitter.py @@ -1,8 +1,11 @@ #!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # -# This example shows how faces are jittered and data augmentation using dlib's disturb_colors -# takes place during the training of a face recognition model using metric learning. +# This example shows how faces were jittered and augmented to create training +# data for dlib's face recognition model. It takes an input image and +# disturbs the colors as well as applies random translations, rotations, and +# scaling. + # # COMPILING/INSTALLING THE DLIB PYTHON INTERFACE # You can install dlib using the command: @@ -25,7 +28,6 @@ # Also note that this example requires OpenCV and Numpy which can be installed # via the command: # pip install opencv-python numpy -# Or downloaded from http://opencv.org/releases.html # # The image file used in this example is in the public domain: # https://commons.wikimedia.org/wiki/File:Tom_Cruise_avp_2014_4.jpg @@ -81,16 +83,15 @@ for detection in dets: # Get the aligned face image and show it image = dlib.get_face_chip(img, faces[0], size=320) -cv_rgb_image = np.array(image).astype(np.uint8) -cv_bgr_img = cv2.cvtColor(cv_rgb_image, cv2.COLOR_RGB2BGR) +cv_bgr_img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) cv2.imshow('image',cv_bgr_img) cv2.waitKey(0) # Show 5 jittered images without data augmentation -jittered_images = dlib.jitter_image(cv_rgb_image, num_jitters=5) +jittered_images = dlib.jitter_image(image, num_jitters=5) show_jittered_images(jittered_images) # Show 5 jittered images with data augmentation -jittered_images = dlib.jitter_image(cv_rgb_image, num_jitters=5, disturb_colors=True) +jittered_images = dlib.jitter_image(image, num_jitters=5, disturb_colors=True) show_jittered_images(jittered_images) -cv2.destroyAllWindows() \ No newline at end of file +cv2.destroyAllWindows()