CenterNet/readme/INSTALL.md

75 lines
2.3 KiB
Markdown

# Installation
The code was tested on Ubuntu 16.04, with [Anaconda](https://www.anaconda.com/download) Python 3.6 and [PyTorch]((http://pytorch.org/)) v0.4.1. NVIDIA GPUs are needed for both training and testing.
After install Anaconda:
0. [Optional but recommended] create a new conda environment.
~~~
conda create --name CenterNet python=3.6
~~~
And activate the environment.
~~~
conda activate CenterNet
~~~
1. Install pytorch0.4.1:
~~~
conda install pytorch=0.4.1 torchvision -c pytorch
~~~
And disable cudnn batch normalization(Due to [this issue](https://github.com/xingyizhou/pytorch-pose-hg-3d/issues/16)).
~~~
# PYTORCH=/path/to/pytorch # usually ~/anaconda3/envs/CenterNet/lib/python3.6/site-packages/
# for pytorch v0.4.0
sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
# for pytorch v0.4.1
sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
~~~
For other pytorch version, you can manually open `torch/nn/functional.py` and find the line with `torch.batch_norm` and replace the `torch.backends.cudnn.enabled` with `False`. We observed slight worse training results without doing so.
2. Install [COCOAPI](https://github.com/cocodataset/cocoapi):
~~~
# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
make
python setup.py install --user
~~~
3. Clone this repo:
~~~
CenterNet_ROOT=/path/to/clone/CenterNet
git clone https://github.com/xingyizhou/CenterNet $CenterNet_ROOT
~~~
4. Install the requirements
~~~
pip install -r requirements.txt
~~~
5. Compile deformable convolutional (from [DCNv2](https://github.com/CharlesShang/DCNv2/tree/pytorch_0.4)).
~~~
cd $CenterNet_ROOT/src/lib/models/networks/DCNv2
./make.sh
~~~
6. [Optional, only required if you are using extremenet or multi-scale testing] Compile NMS if your want to use multi-scale testing or test ExtremeNet.
~~~
cd $CenterNet_ROOT/src/lib/external
make
~~~
7. Download pertained models for [detection]() or [pose estimation]() and move them to `$CenterNet_ROOT/models/`. More models can be found in [Model zoo](MODEL_ZOO.md).