182 lines
5.9 KiB
Python
182 lines
5.9 KiB
Python
#!/usr/bin/env python3
|
||
# -*- coding: utf-8 -*-
|
||
#
|
||
# Copyright 2016-2099 Ailemon.net
|
||
#
|
||
# This file is part of ASRT Speech Recognition Tool.
|
||
#
|
||
# ASRT is free software: you can redistribute it and/or modify
|
||
# it under the terms of the GNU General Public License as published by
|
||
# the Free Software Foundation, either version 3 of the License, or
|
||
# (at your option) any later version.
|
||
# ASRT is distributed in the hope that it will be useful,
|
||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
# GNU General Public License for more details.
|
||
#
|
||
# You should have received a copy of the GNU General Public License
|
||
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
|
||
# ============================================================================
|
||
|
||
"""
|
||
@author: nl8590687
|
||
一些常用操作函数的定义
|
||
"""
|
||
|
||
import wave
|
||
import difflib
|
||
import matplotlib.pyplot as plt
|
||
import numpy as np
|
||
|
||
|
||
def read_wav_data(filename: str) -> tuple:
|
||
"""
|
||
读取一个wav文件,返回声音信号的时域谱矩阵和播放时间
|
||
"""
|
||
wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流
|
||
num_frame = wav.getnframes() # 获取帧数
|
||
num_channel=wav.getnchannels() # 获取声道数
|
||
framerate=wav.getframerate() # 获取帧速率
|
||
num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数
|
||
str_data = wav.readframes(num_frame) # 读取全部的帧
|
||
wav.close() # 关闭流
|
||
wave_data = np.fromstring(str_data, dtype = np.short) # 将声音文件数据转换为数组矩阵形式
|
||
wave_data.shape = -1, num_channel # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵
|
||
wave_data = wave_data.T # 将矩阵转置
|
||
return wave_data, framerate, num_channel, num_sample_width
|
||
|
||
|
||
def read_wav_bytes(filename: str) -> tuple:
|
||
"""
|
||
读取一个wav文件,返回声音信号的时域谱矩阵和播放时间
|
||
"""
|
||
wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流
|
||
num_frame = wav.getnframes() # 获取帧数
|
||
num_channel=wav.getnchannels() # 获取声道数
|
||
framerate=wav.getframerate() # 获取帧速率
|
||
num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数
|
||
str_data = wav.readframes(num_frame) # 读取全部的帧
|
||
wav.close() # 关闭流
|
||
return str_data, framerate, num_channel, num_sample_width
|
||
|
||
|
||
def get_edit_distance(str1, str2) -> int:
|
||
"""
|
||
计算两个串的编辑距离,支持str和list类型
|
||
"""
|
||
leven_cost = 0
|
||
sequence_match = difflib.SequenceMatcher(None, str1, str2)
|
||
for tag, index_1, index_2, index_j1, index_j2 in sequence_match.get_opcodes():
|
||
if tag == 'replace':
|
||
leven_cost += max(index_2-index_1, index_j2-index_j1)
|
||
elif tag == 'insert':
|
||
leven_cost += (index_j2-index_j1)
|
||
elif tag == 'delete':
|
||
leven_cost += (index_2-index_1)
|
||
return leven_cost
|
||
|
||
|
||
def ctc_decode_delete_tail_blank(ctc_decode_list):
|
||
"""
|
||
处理CTC解码后序列末尾余留的空白元素,删除掉
|
||
"""
|
||
p = 0
|
||
while p < len(ctc_decode_list) and ctc_decode_list[p] != -1:
|
||
p += 1
|
||
return ctc_decode_list[0:p]
|
||
|
||
|
||
def visual_1D(points_list, frequency=1):
|
||
"""
|
||
可视化1D数据
|
||
"""
|
||
# 首先创建绘图网格,1个子图
|
||
fig, ax = plt.subplots(1)
|
||
x = np.linspace(0, len(points_list)-1, len(points_list)) / frequency
|
||
|
||
# 在对应对象上调用 plot() 方法
|
||
ax.plot(x, points_list)
|
||
fig.show()
|
||
|
||
|
||
def visual_2D(img):
|
||
"""
|
||
可视化2D数据
|
||
"""
|
||
plt.subplot(111)
|
||
plt.imshow(img)
|
||
plt.colorbar(cax=None, ax=None, shrink=0.5)
|
||
plt.show()
|
||
|
||
|
||
def decode_wav_bytes(samples_data: bytes, channels: int = 1, byte_width: int = 2) -> list:
|
||
"""
|
||
解码wav格式样本点字节流,得到numpy数组
|
||
"""
|
||
numpy_type = np.short
|
||
if byte_width == 4:
|
||
numpy_type = np.int
|
||
elif byte_width != 2:
|
||
raise Exception('error: unsurpport byte width `' + str(byte_width) + '`')
|
||
wave_data = np.fromstring(samples_data, dtype=numpy_type) # 将声音文件数据转换为数组矩阵形式
|
||
wave_data.shape = -1, channels # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵
|
||
wave_data = wave_data.T # 将矩阵转置
|
||
return wave_data
|
||
|
||
|
||
def get_symbol_dict(dict_filename):
|
||
"""
|
||
读取拼音汉字的字典文件
|
||
返回读取后的字典
|
||
"""
|
||
txt_obj = open(dict_filename, 'r', encoding='UTF-8') # 打开文件并读入
|
||
txt_text = txt_obj.read()
|
||
txt_obj.close()
|
||
txt_lines = txt_text.split('\n') # 文本分割
|
||
|
||
dic_symbol = {} # 初始化符号字典
|
||
for i in txt_lines:
|
||
list_symbol = [] # 初始化符号列表
|
||
if i != '':
|
||
txt_l=i.split('\t')
|
||
pinyin = txt_l[0]
|
||
for word in txt_l[1]:
|
||
list_symbol.append(word)
|
||
dic_symbol[pinyin] = list_symbol
|
||
|
||
return dic_symbol
|
||
|
||
|
||
def get_language_model(model_language_filename):
|
||
"""
|
||
读取语言模型的文件
|
||
返回读取后的模型
|
||
"""
|
||
txt_obj = open(model_language_filename, 'r', encoding='UTF-8') # 打开文件并读入
|
||
txt_text = txt_obj.read()
|
||
txt_obj.close()
|
||
txt_lines = txt_text.split('\n') # 文本分割
|
||
|
||
dic_model = {} # 初始化符号字典
|
||
for i in txt_lines:
|
||
if i != '':
|
||
txt_l = i.split('\t')
|
||
if len(txt_l) == 1:
|
||
continue
|
||
dic_model[txt_l[0]] = txt_l[1]
|
||
|
||
return dic_model
|
||
|
||
|
||
def ctc_decode_stream(tokens):
|
||
i = 0
|
||
while i < len(tokens):
|
||
while i+1 < len(tokens) and tokens[i] == tokens[i+1]:
|
||
i += 1
|
||
if i+1 == len(tokens) and tokens[i] != -1:
|
||
return tokens[0], []
|
||
if tokens[i] != -1:
|
||
return tokens[i], tokens[i+1:]
|
||
i += 1
|
||
return -1, []
|