#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2016-2099 Ailemon.net # # This file is part of ASRT Speech Recognition Tool. # # ASRT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # ASRT is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ASRT. If not, see . # ============================================================================ """ @author: nl8590687 一些常用操作函数的定义 """ import wave import difflib import matplotlib.pyplot as plt import numpy as np def read_wav_data(filename: str) -> tuple: """ 读取一个wav文件,返回声音信号的时域谱矩阵和播放时间 """ wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流 num_frame = wav.getnframes() # 获取帧数 num_channel=wav.getnchannels() # 获取声道数 framerate=wav.getframerate() # 获取帧速率 num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数 str_data = wav.readframes(num_frame) # 读取全部的帧 wav.close() # 关闭流 wave_data = np.fromstring(str_data, dtype = np.short) # 将声音文件数据转换为数组矩阵形式 wave_data.shape = -1, num_channel # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵 wave_data = wave_data.T # 将矩阵转置 return wave_data, framerate, num_channel, num_sample_width def read_wav_bytes(filename: str) -> tuple: """ 读取一个wav文件,返回声音信号的时域谱矩阵和播放时间 """ wav = wave.open(filename,"rb") # 打开一个wav格式的声音文件流 num_frame = wav.getnframes() # 获取帧数 num_channel=wav.getnchannels() # 获取声道数 framerate=wav.getframerate() # 获取帧速率 num_sample_width=wav.getsampwidth() # 获取实例的比特宽度,即每一帧的字节数 str_data = wav.readframes(num_frame) # 读取全部的帧 wav.close() # 关闭流 return str_data, framerate, num_channel, num_sample_width def get_edit_distance(str1, str2) -> int: """ 计算两个串的编辑距离,支持str和list类型 """ leven_cost = 0 sequence_match = difflib.SequenceMatcher(None, str1, str2) for tag, index_1, index_2, index_j1, index_j2 in sequence_match.get_opcodes(): if tag == 'replace': leven_cost += max(index_2-index_1, index_j2-index_j1) elif tag == 'insert': leven_cost += (index_j2-index_j1) elif tag == 'delete': leven_cost += (index_2-index_1) return leven_cost def ctc_decode_delete_tail_blank(ctc_decode_list): """ 处理CTC解码后序列末尾余留的空白元素,删除掉 """ p = 0 while p < len(ctc_decode_list) and ctc_decode_list[p] != -1: p += 1 return ctc_decode_list[0:p] def visual_1D(points_list, frequency=1): """ 可视化1D数据 """ # 首先创建绘图网格,1个子图 fig, ax = plt.subplots(1) x = np.linspace(0, len(points_list)-1, len(points_list)) / frequency # 在对应对象上调用 plot() 方法 ax.plot(x, points_list) fig.show() def visual_2D(img): """ 可视化2D数据 """ plt.subplot(111) plt.imshow(img) plt.colorbar(cax=None, ax=None, shrink=0.5) plt.show() def decode_wav_bytes(samples_data: bytes, channels: int = 1, byte_width: int = 2) -> list: """ 解码wav格式样本点字节流,得到numpy数组 """ numpy_type = np.short if byte_width == 4: numpy_type = np.int elif byte_width != 2: raise Exception('error: unsurpport byte width `' + str(byte_width) + '`') wave_data = np.fromstring(samples_data, dtype=numpy_type) # 将声音文件数据转换为数组矩阵形式 wave_data.shape = -1, channels # 按照声道数将数组整形,单声道时候是一列数组,双声道时候是两列的矩阵 wave_data = wave_data.T # 将矩阵转置 return wave_data def get_symbol_dict(dict_filename): """ 读取拼音汉字的字典文件 返回读取后的字典 """ txt_obj = open(dict_filename, 'r', encoding='UTF-8') # 打开文件并读入 txt_text = txt_obj.read() txt_obj.close() txt_lines = txt_text.split('\n') # 文本分割 dic_symbol = {} # 初始化符号字典 for i in txt_lines: list_symbol = [] # 初始化符号列表 if i != '': txt_l=i.split('\t') pinyin = txt_l[0] for word in txt_l[1]: list_symbol.append(word) dic_symbol[pinyin] = list_symbol return dic_symbol def get_language_model(model_language_filename): """ 读取语言模型的文件 返回读取后的模型 """ txt_obj = open(model_language_filename, 'r', encoding='UTF-8') # 打开文件并读入 txt_text = txt_obj.read() txt_obj.close() txt_lines = txt_text.split('\n') # 文本分割 dic_model = {} # 初始化符号字典 for i in txt_lines: if i != '': txt_l = i.split('\t') if len(txt_l) == 1: continue dic_model[txt_l[0]] = txt_l[1] return dic_model def ctc_decode_stream(tokens): i = 0 while i < len(tokens): while i+1 < len(tokens) and tokens[i] == tokens[i+1]: i += 1 if i+1 == len(tokens) and tokens[i] != -1: return tokens[0], [] if tokens[i] != -1: return tokens[i], tokens[i+1:] i += 1 return -1, []