修复pytorch训练时loss问题

This commit is contained in:
nl8590687 2024-09-26 23:19:06 +08:00
parent 9375ecb2db
commit 341b491baa
3 changed files with 124 additions and 75 deletions

View File

@ -22,10 +22,9 @@
@author: nl8590687 / Evelynn-n @author: nl8590687 / Evelynn-n
若干 pytorch版声学模型模型的定义和实现 若干 pytorch版声学模型模型的定义和实现
""" """
import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as function import torch.nn.functional as function
import tqdm
class SpeechModel251BN(nn.Module): class SpeechModel251BN(nn.Module):
@ -37,83 +36,86 @@ class SpeechModel251BN(nn.Module):
self._model_name = 'SpeechModel251bn' self._model_name = 'SpeechModel251bn'
self.output_shape = (input_shape[0] // self._pool_size, output_size) self.output_shape = (input_shape[0] // self._pool_size, output_size)
# block 1
self.conv0 = nn.Conv2d(1, 32, kernel_size=(3, 3), padding='same') self.conv0 = nn.Conv2d(1, 32, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv0.weight.data)
self.bn0 = nn.BatchNorm2d(32, eps=0.0002) self.bn0 = nn.BatchNorm2d(32, eps=0.0002)
self.conv1 = nn.Conv2d(32, 32, kernel_size=(3, 3), padding='same') self.conv1 = nn.Conv2d(32, 32, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv1.weight.data)
self.bn1 = nn.BatchNorm2d(32, eps=0.0002) self.bn1 = nn.BatchNorm2d(32, eps=0.0002)
# self.maxpool1 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) # block 2
self.conv2 = nn.Conv2d(32, 64, kernel_size=(3, 3), padding='same') self.conv2 = nn.Conv2d(32, 64, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv2.weight.data)
self.bn2 = nn.BatchNorm2d(64, eps=0.0002) self.bn2 = nn.BatchNorm2d(64, eps=0.0002)
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), padding='same') self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv3.weight.data)
self.bn3 = nn.BatchNorm2d(64, eps=0.0002) self.bn3 = nn.BatchNorm2d(64, eps=0.0002)
# self.maxpool2 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) # block 3
self.conv4 = nn.Conv2d(64, 128, kernel_size=(3, 3), padding='same') self.conv4 = nn.Conv2d(64, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv4.weight.data)
self.bn4 = nn.BatchNorm2d(128, eps=0.0002) self.bn4 = nn.BatchNorm2d(128, eps=0.0002)
self.conv5 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') self.conv5 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv5.weight.data)
self.bn5 = nn.BatchNorm2d(128, eps=0.0002) self.bn5 = nn.BatchNorm2d(128, eps=0.0002)
# self.maxpool3 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) # block 4
self.conv6 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') self.conv6 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv6.weight.data)
self.bn6 = nn.BatchNorm2d(128, eps=0.0002) self.bn6 = nn.BatchNorm2d(128, eps=0.0002)
self.conv7 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') self.conv7 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv7.weight.data)
self.bn7 = nn.BatchNorm2d(128, eps=0.0002) self.bn7 = nn.BatchNorm2d(128, eps=0.0002)
# self.maxpool4 = F.max_pool2d(kernel_size=(1,1),stride=(1,1)) # block 5
self.conv8 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') self.conv8 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv8.weight.data)
self.bn8 = nn.BatchNorm2d(128, eps=0.0002) self.bn8 = nn.BatchNorm2d(128, eps=0.0002)
self.conv9 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') self.conv9 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same')
torch.nn.init.kaiming_normal_(self.conv9.weight.data)
self.bn9 = nn.BatchNorm2d(128, eps=0.0002) self.bn9 = nn.BatchNorm2d(128, eps=0.0002)
# self.maxpool5 = F.max_pool2d(kernel_size=(1,1),stride=(1,1))
self.dense0 = nn.Linear(input_shape[1]//8*128, 128) self.dense0 = nn.Linear(input_shape[1]//8*128, 128)
torch.nn.init.kaiming_normal_(self.dense0.weight.data)
self.dense1 = nn.Linear(128, output_size) self.dense1 = nn.Linear(128, output_size)
torch.nn.init.kaiming_normal_(self.dense1.weight.data)
self.ctc_loss = nn.CTCLoss(blank=0) self.ctc_loss = nn.CTCLoss(blank=0)
def forward(self, x): def forward(self, x):
x = x.permute(0, 3, 2, 1)
# block 1
x = function.relu(self.bn0(self.conv0(x))) x = function.relu(self.bn0(self.conv0(x)))
x = function.relu(self.bn1(self.conv1(x))) x = function.relu(self.bn1(self.conv1(x)))
# print(x.size())
x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2))
# block 2
x = function.relu(self.bn2(self.conv2(x))) x = function.relu(self.bn2(self.conv2(x)))
x = function.relu(self.bn3(self.conv3(x))) x = function.relu(self.bn3(self.conv3(x)))
# print(x.size())
x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2))
# block 3
x = function.relu(self.bn4(self.conv4(x))) x = function.relu(self.bn4(self.conv4(x)))
x = function.relu(self.bn5(self.conv5(x))) x = function.relu(self.bn5(self.conv5(x)))
# print(x.size())
x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2))
# block 4
x = function.relu(self.bn6(self.conv6(x))) x = function.relu(self.bn6(self.conv6(x)))
x = function.relu(self.bn7(self.conv7(x))) x = function.relu(self.bn7(self.conv7(x)))
# print(x.size())
x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1)) x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1))
# block 5
x = function.relu(self.bn8(self.conv8(x))) x = function.relu(self.bn8(self.conv8(x)))
x = function.relu(self.bn9(self.conv9(x))) x = function.relu(self.bn9(self.conv9(x)))
# print(x.size())
x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1)) x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1))
# print(x.size())
x = x.permute(0, 2, 3, 1) x = x.reshape(x.size(0), -1, x.size(3))
x = x.reshape(x.size(0), x.size(1), -1) x = x.permute(0, 2, 1)
# x = x.permute(0, 2, 1)
# x = x.view(x.size(0),x.size(1), -1)
# print(x.size())
x = function.relu(self.dense0(x)) x = function.relu(self.dense0(x))
# print(x.size()) x = function.log_softmax(self.dense1(x))
x = function.softmax(self.dense1(x))
# print(x.size())
return x return x
def compute_loss(self, y_pred, labels, input_length, label_length): def compute_loss(self, y_pred, labels, input_length, label_length):
@ -121,31 +123,6 @@ class SpeechModel251BN(nn.Module):
loss = self.ctc_loss(y_pred, labels, input_length, label_length) loss = self.ctc_loss(y_pred, labels, input_length, label_length)
return loss return loss
def train_model(self, train_loader, optimizer, num_epochs=10, device='cpu'):
self.to(device)
self.train()
for epoch in tqdm(range(num_epochs)):
epoch_loss = 0.0
for batch in train_loader:
inputs, labels, input_lengths, label_lengths = batch
inputs = inputs.to(device)
labels = labels.to(device)
input_lengths = input_lengths.to(device)
label_lengths = label_lengths.to(device)
optimizer.zero_grad()
y_pred = self.forward(inputs)
loss = self.compute_loss(y_pred, labels, input_lengths, label_lengths)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
avg_loss = epoch_loss / len(train_loader)
print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {avg_loss:.4f}")
def get_model(self): def get_model(self):
return self return self

View File

@ -24,22 +24,26 @@
""" """
import os import os
import time
import torch import torch
from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset, DataLoader as TorchDataLoader
from data_loader import DataLoader
from speech_features.speech_features import SpeechFeatureMeta
class SpeechDataset(Dataset): class SpeechDataset(Dataset):
def __init__(self, data_loader, speech_features, input_shape, max_label_length, device='cpu'): def __init__(self, data_loader, speech_features, input_shape, max_label_length):
self.data_loader = data_loader self.data_loader = data_loader
self.input_shape = input_shape self.input_shape = input_shape
self.speech_features = speech_features self.speech_features = speech_features
self.max_label_length = max_label_length self.max_label_length = max_label_length
self.data_count = self.data_loader.get_data_count() self.data_count = self.data_loader.get_data_count()
self.device = device
def __len__(self): def __len__(self):
return self.data_count return self.data_count
def __getitem__(self, index): def __getitem__(self, index):
wav_data, sample_rate, data_labels = self.data_loader.get_data(index) wav_data, sample_rate, data_labels = self.data_loader.get_data(index)
@ -54,49 +58,74 @@ class SpeechDataset(Dataset):
# 初始化输入特征数组,填充到 `input_shape` 大小 # 初始化输入特征数组,填充到 `input_shape` 大小
x = torch.zeros(self.input_shape) x = torch.zeros(self.input_shape)
x[:len(data_input)] = torch.tensor(data_input, dtype=torch.float32) x[:len(data_input)] = torch.tensor(data_input, dtype=torch.float32)
x = x.permute(2, 0, 1)
# 初始化标签数组,填充到 `max_label_length` 大小 # 初始化标签数组,填充到 `max_label_length` 大小
y = torch.zeros(self.max_label_length, dtype=torch.int16) y = torch.zeros(self.max_label_length, dtype=torch.int16)
y[:len(data_labels)] = torch.tensor(data_labels, dtype=torch.int16) y[:len(data_labels)] = torch.tensor(data_labels, dtype=torch.int16) + 1
# 转换为 PyTorch 张量 # 转换为 PyTorch 张量
input_length = torch.tensor([inlen], dtype=torch.float32) input_length = torch.tensor((inlen,), dtype=torch.float32)
label_length = torch.tensor([len(data_labels)], dtype=torch.float32) label_length = torch.tensor((len(data_labels),), dtype=torch.float32)
return x, y, input_length, label_length return x, y, input_length, label_length
class ModelSpeech: class ModelSpeech:
def __init__(self, speech_model, speech_features, max_label_length=64): def __init__(self, speech_model: torch.nn.Module, speech_features: SpeechFeatureMeta, max_label_length: int = 64):
"""模型初始化""" """模型初始化"""
self.speech_model = speech_model self.speech_model = speech_model
self.trained_model = speech_model.get_model() self.trained_model = speech_model.get_model()
self.speech_features = speech_features self.speech_features = speech_features
self.max_label_length = max_label_length self.max_label_length = max_label_length
def train(self, data_loader, epochs, batch_size, optimizer, save_step=1, last_epoch=0, device='cpu'): def train(self, data_loader: DataLoader, epochs: int, batch_size: int, optimizer: torch.optim.Optimizer,
device: str = 'cpu'):
"""训练模型""" """训练模型"""
save_filename = os.path.join('save_models_torch', self.speech_model.get_model_name() + '.pth') speechdata = SpeechDataset(data_loader, self.speech_features, input_shape=self.speech_model.input_shape,
max_label_length=self.max_label_length)
self.trained_model.to(device) self.trained_model.to(device)
print('[ASRT] torch model successfully initialized to device: {}'.format(device)) print('[ASRT] torch model successfully initialized to device: {}'.format(device))
data_loader = DataLoader(data_loader, batch_size=batch_size, shuffle=True) data_loader = TorchDataLoader(speechdata, batch_size=batch_size, shuffle=True)
model = self.speech_model model = self.speech_model
for epoch in range(epochs): for epoch in range(epochs):
print('[ASRT] Epoch {}/{}'.format(epoch+1, epochs)) print('[ASRT] Epoch {}/{}'.format(epoch + 1, epochs))
epoch_loss = 0.0 epoch_loss = 0.0
iter_index = 0
t0 = time.time()
for batch in data_loader: for batch in data_loader:
x, y, input_length, label_length = batch x, y, input_length, label_length = batch
x = x.to(device) x = x.to(device)
y = y.to(device) y = y.to(device)
input_length = input_length.to(device).unsqueeze(1).long() input_length = input_length.to(device).long()
label_length = label_length.to(device).unsqueeze(1).long() label_length = label_length.to(device).long()
optimizer.zero_grad() optimizer.zero_grad()
y_pred = model(x) y_pred = model(x)
# print(y_pred.shape, y.shape, input_length.shape, label_length.shape)
loss = model.compute_loss(y_pred, y, input_length, label_length) loss = model.compute_loss(y_pred, y, input_length, label_length)
loss.backward() loss.backward()
optimizer.step() optimizer.step()
epoch_loss += loss.item()
avg_loss = epoch_loss / len(data_loader) epoch_loss += loss.item()
print(f"Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}") iter_index += 1
t1 = time.time()
predict_total_time = (t1-t0)*len(data_loader)/iter_index
predict_remain_time = predict_total_time - (t1-t0)
cur_batch_loss = loss.item()
cur_avg_loss = epoch_loss / iter_index
print("[ASRT]", f"{predict_remain_time:.2f}/{predict_total_time:.2f} s,",
f"step {iter_index}/{len(data_loader)},", f"current loss: {cur_batch_loss:.4f}",
f"avg loss: {cur_avg_loss:.4f}", end="\r")
save_filename = os.path.join('save_models_torch', f"{self.speech_model.get_model_name()}_epoch{epoch+1}.pth")
self.save_weight(save_filename)
avg_loss = epoch_loss / len(data_loader)
total_time = time.time()-t0
avg_time_per_step = total_time / len(data_loader)
print("[ASRT]", f"epoch {epoch + 1}/{epochs},", f"time cost: {total_time:.2f} s,",
f"{avg_time_per_step:.2f} s/step", f"avg loss: {avg_loss:.4f}")
def save_weight(self, filename: str):
save_filename = os.path.join('save_models_torch', filename + ".pth")
torch.save(self.speech_model.state_dict(), save_filename)
def load_weight(self, filepath: str):
self.speech_model.load_state_dict(torch.load(filepath))

View File

@ -0,0 +1,43 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# Copyright 2016-2099 Ailemon.net
#
# This file is part of ASRT Speech Recognition Tool.
#
# ASRT is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# ASRT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with ASRT. If not, see <https://www.gnu.org/licenses/>.
# ============================================================================
"""
@author: nl8590687
pytorch版声学模型训练脚本入口
"""
from torch import optim
from torch_speech_model import *
from speech_features import SpecAugment
from data_loader import DataLoader
from model_zoo.speech_model.pytorch_backend import SpeechModel251BN
if __name__ == "__main__":
feat = SpecAugment()
data_loader = DataLoader('train')
model = SpeechModel251BN()
speechModel = ModelSpeech(model, feat, max_label_length=64)
print(model)
# speechModel.load_weight(os.path.join('save_models_torch', model.get_model_name()+"_save.pth"))
speechModel.train(data_loader, epochs=10, batch_size=16, optimizer=optim.Adam(model.parameters(), lr=0.001),
device="cuda:0")
speechModel.save_weight(model.get_model_name()+"_save")