From 341b491baa18722df958d7da4eddecfd868f7502 Mon Sep 17 00:00:00 2001 From: nl8590687 <3210346136@qq.com> Date: Thu, 26 Sep 2024 23:19:06 +0800 Subject: [PATCH] =?UTF-8?q?=E4=BF=AE=E5=A4=8Dpytorch=E8=AE=AD=E7=BB=83?= =?UTF-8?q?=E6=97=B6loss=E9=97=AE=E9=A2=98?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- model_zoo/speech_model/pytorch_backend.py | 89 +++++++++-------------- torch_speech_model.py | 67 ++++++++++++----- train_speech_model_pytorch.py | 43 +++++++++++ 3 files changed, 124 insertions(+), 75 deletions(-) create mode 100644 train_speech_model_pytorch.py diff --git a/model_zoo/speech_model/pytorch_backend.py b/model_zoo/speech_model/pytorch_backend.py index 6d5526c..2a438d1 100644 --- a/model_zoo/speech_model/pytorch_backend.py +++ b/model_zoo/speech_model/pytorch_backend.py @@ -22,10 +22,9 @@ @author: nl8590687 / Evelynn-n 若干 pytorch版声学模型模型的定义和实现 """ - +import torch import torch.nn as nn import torch.nn.functional as function -import tqdm class SpeechModel251BN(nn.Module): @@ -37,83 +36,86 @@ class SpeechModel251BN(nn.Module): self._model_name = 'SpeechModel251bn' self.output_shape = (input_shape[0] // self._pool_size, output_size) + # block 1 self.conv0 = nn.Conv2d(1, 32, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv0.weight.data) self.bn0 = nn.BatchNorm2d(32, eps=0.0002) - self.conv1 = nn.Conv2d(32, 32, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv1.weight.data) self.bn1 = nn.BatchNorm2d(32, eps=0.0002) - # self.maxpool1 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) - + # block 2 self.conv2 = nn.Conv2d(32, 64, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv2.weight.data) self.bn2 = nn.BatchNorm2d(64, eps=0.0002) - self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv3.weight.data) self.bn3 = nn.BatchNorm2d(64, eps=0.0002) - # self.maxpool2 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) - + # block 3 self.conv4 = nn.Conv2d(64, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv4.weight.data) self.bn4 = nn.BatchNorm2d(128, eps=0.0002) - self.conv5 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv5.weight.data) self.bn5 = nn.BatchNorm2d(128, eps=0.0002) - # self.maxpool3 = F.max_pool2d(kernel_size=(2, 2), stride=(2, 2)) - + # block 4 self.conv6 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv6.weight.data) self.bn6 = nn.BatchNorm2d(128, eps=0.0002) - self.conv7 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv7.weight.data) self.bn7 = nn.BatchNorm2d(128, eps=0.0002) - # self.maxpool4 = F.max_pool2d(kernel_size=(1,1),stride=(1,1)) - + # block 5 self.conv8 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv8.weight.data) self.bn8 = nn.BatchNorm2d(128, eps=0.0002) - self.conv9 = nn.Conv2d(128, 128, kernel_size=(3, 3), padding='same') + torch.nn.init.kaiming_normal_(self.conv9.weight.data) self.bn9 = nn.BatchNorm2d(128, eps=0.0002) - # self.maxpool5 = F.max_pool2d(kernel_size=(1,1),stride=(1,1)) - self.dense0 = nn.Linear(input_shape[1]//8*128, 128) + torch.nn.init.kaiming_normal_(self.dense0.weight.data) self.dense1 = nn.Linear(128, output_size) + torch.nn.init.kaiming_normal_(self.dense1.weight.data) self.ctc_loss = nn.CTCLoss(blank=0) def forward(self, x): + x = x.permute(0, 3, 2, 1) + + # block 1 x = function.relu(self.bn0(self.conv0(x))) x = function.relu(self.bn1(self.conv1(x))) - # print(x.size()) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) + + # block 2 x = function.relu(self.bn2(self.conv2(x))) x = function.relu(self.bn3(self.conv3(x))) - # print(x.size()) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) + + # block 3 x = function.relu(self.bn4(self.conv4(x))) x = function.relu(self.bn5(self.conv5(x))) - # print(x.size()) x = function.max_pool2d(x, kernel_size=(2, 2), stride=(2, 2)) + + # block 4 x = function.relu(self.bn6(self.conv6(x))) x = function.relu(self.bn7(self.conv7(x))) - # print(x.size()) x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1)) + + # block 5 x = function.relu(self.bn8(self.conv8(x))) x = function.relu(self.bn9(self.conv9(x))) - # print(x.size()) x = function.max_pool2d(x, kernel_size=(1, 1), stride=(1, 1)) - # print(x.size()) - x = x.permute(0, 2, 3, 1) - x = x.reshape(x.size(0), x.size(1), -1) - # x = x.permute(0, 2, 1) - # x = x.view(x.size(0),x.size(1), -1) - # print(x.size()) + + x = x.reshape(x.size(0), -1, x.size(3)) + x = x.permute(0, 2, 1) x = function.relu(self.dense0(x)) - # print(x.size()) - x = function.softmax(self.dense1(x)) - # print(x.size()) + x = function.log_softmax(self.dense1(x)) return x def compute_loss(self, y_pred, labels, input_length, label_length): @@ -121,31 +123,6 @@ class SpeechModel251BN(nn.Module): loss = self.ctc_loss(y_pred, labels, input_length, label_length) return loss - def train_model(self, train_loader, optimizer, num_epochs=10, device='cpu'): - self.to(device) - self.train() - - for epoch in tqdm(range(num_epochs)): - epoch_loss = 0.0 - for batch in train_loader: - inputs, labels, input_lengths, label_lengths = batch - inputs = inputs.to(device) - labels = labels.to(device) - input_lengths = input_lengths.to(device) - label_lengths = label_lengths.to(device) - - optimizer.zero_grad() - y_pred = self.forward(inputs) - - loss = self.compute_loss(y_pred, labels, input_lengths, label_lengths) - loss.backward() - optimizer.step() - - epoch_loss += loss.item() - - avg_loss = epoch_loss / len(train_loader) - print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {avg_loss:.4f}") - def get_model(self): return self diff --git a/torch_speech_model.py b/torch_speech_model.py index 2282fe8..808c3bf 100644 --- a/torch_speech_model.py +++ b/torch_speech_model.py @@ -24,22 +24,26 @@ """ import os +import time + import torch -from torch.utils.data import Dataset, DataLoader +from torch.utils.data import Dataset, DataLoader as TorchDataLoader + +from data_loader import DataLoader +from speech_features.speech_features import SpeechFeatureMeta class SpeechDataset(Dataset): - def __init__(self, data_loader, speech_features, input_shape, max_label_length, device='cpu'): + def __init__(self, data_loader, speech_features, input_shape, max_label_length): self.data_loader = data_loader self.input_shape = input_shape self.speech_features = speech_features self.max_label_length = max_label_length self.data_count = self.data_loader.get_data_count() - self.device = device def __len__(self): return self.data_count - + def __getitem__(self, index): wav_data, sample_rate, data_labels = self.data_loader.get_data(index) @@ -54,49 +58,74 @@ class SpeechDataset(Dataset): # 初始化输入特征数组,填充到 `input_shape` 大小 x = torch.zeros(self.input_shape) x[:len(data_input)] = torch.tensor(data_input, dtype=torch.float32) - x = x.permute(2, 0, 1) # 初始化标签数组,填充到 `max_label_length` 大小 y = torch.zeros(self.max_label_length, dtype=torch.int16) - y[:len(data_labels)] = torch.tensor(data_labels, dtype=torch.int16) + y[:len(data_labels)] = torch.tensor(data_labels, dtype=torch.int16) + 1 # 转换为 PyTorch 张量 - input_length = torch.tensor([inlen], dtype=torch.float32) - label_length = torch.tensor([len(data_labels)], dtype=torch.float32) + input_length = torch.tensor((inlen,), dtype=torch.float32) + label_length = torch.tensor((len(data_labels),), dtype=torch.float32) return x, y, input_length, label_length class ModelSpeech: - def __init__(self, speech_model, speech_features, max_label_length=64): + def __init__(self, speech_model: torch.nn.Module, speech_features: SpeechFeatureMeta, max_label_length: int = 64): """模型初始化""" self.speech_model = speech_model self.trained_model = speech_model.get_model() self.speech_features = speech_features self.max_label_length = max_label_length - def train(self, data_loader, epochs, batch_size, optimizer, save_step=1, last_epoch=0, device='cpu'): + def train(self, data_loader: DataLoader, epochs: int, batch_size: int, optimizer: torch.optim.Optimizer, + device: str = 'cpu'): """训练模型""" - save_filename = os.path.join('save_models_torch', self.speech_model.get_model_name() + '.pth') + speechdata = SpeechDataset(data_loader, self.speech_features, input_shape=self.speech_model.input_shape, + max_label_length=self.max_label_length) self.trained_model.to(device) print('[ASRT] torch model successfully initialized to device: {}'.format(device)) - data_loader = DataLoader(data_loader, batch_size=batch_size, shuffle=True) + data_loader = TorchDataLoader(speechdata, batch_size=batch_size, shuffle=True) model = self.speech_model for epoch in range(epochs): - print('[ASRT] Epoch {}/{}'.format(epoch+1, epochs)) + print('[ASRT] Epoch {}/{}'.format(epoch + 1, epochs)) epoch_loss = 0.0 + iter_index = 0 + t0 = time.time() for batch in data_loader: x, y, input_length, label_length = batch x = x.to(device) y = y.to(device) - input_length = input_length.to(device).unsqueeze(1).long() - label_length = label_length.to(device).unsqueeze(1).long() + input_length = input_length.to(device).long() + label_length = label_length.to(device).long() + optimizer.zero_grad() y_pred = model(x) - # print(y_pred.shape, y.shape, input_length.shape, label_length.shape) loss = model.compute_loss(y_pred, y, input_length, label_length) loss.backward() optimizer.step() - epoch_loss += loss.item() - avg_loss = epoch_loss / len(data_loader) - print(f"Epoch {epoch + 1}/{epochs}, Loss: {avg_loss:.4f}") + epoch_loss += loss.item() + iter_index += 1 + t1 = time.time() + predict_total_time = (t1-t0)*len(data_loader)/iter_index + predict_remain_time = predict_total_time - (t1-t0) + cur_batch_loss = loss.item() + cur_avg_loss = epoch_loss / iter_index + print("[ASRT]", f"{predict_remain_time:.2f}/{predict_total_time:.2f} s,", + f"step {iter_index}/{len(data_loader)},", f"current loss: {cur_batch_loss:.4f}", + f"avg loss: {cur_avg_loss:.4f}", end="\r") + + save_filename = os.path.join('save_models_torch', f"{self.speech_model.get_model_name()}_epoch{epoch+1}.pth") + self.save_weight(save_filename) + avg_loss = epoch_loss / len(data_loader) + total_time = time.time()-t0 + avg_time_per_step = total_time / len(data_loader) + print("[ASRT]", f"epoch {epoch + 1}/{epochs},", f"time cost: {total_time:.2f} s,", + f"{avg_time_per_step:.2f} s/step", f"avg loss: {avg_loss:.4f}") + + def save_weight(self, filename: str): + save_filename = os.path.join('save_models_torch', filename + ".pth") + torch.save(self.speech_model.state_dict(), save_filename) + + def load_weight(self, filepath: str): + self.speech_model.load_state_dict(torch.load(filepath)) diff --git a/train_speech_model_pytorch.py b/train_speech_model_pytorch.py new file mode 100644 index 0000000..97f2560 --- /dev/null +++ b/train_speech_model_pytorch.py @@ -0,0 +1,43 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +# +# Copyright 2016-2099 Ailemon.net +# +# This file is part of ASRT Speech Recognition Tool. +# +# ASRT is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# ASRT is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with ASRT. If not, see . +# ============================================================================ + +""" +@author: nl8590687 +pytorch版声学模型训练脚本入口 +""" +from torch import optim + +from torch_speech_model import * +from speech_features import SpecAugment +from data_loader import DataLoader +from model_zoo.speech_model.pytorch_backend import SpeechModel251BN + +if __name__ == "__main__": + feat = SpecAugment() + data_loader = DataLoader('train') + + model = SpeechModel251BN() + speechModel = ModelSpeech(model, feat, max_label_length=64) + print(model) + + # speechModel.load_weight(os.path.join('save_models_torch', model.get_model_name()+"_save.pth")) + speechModel.train(data_loader, epochs=10, batch_size=16, optimizer=optim.Adam(model.parameters(), lr=0.001), + device="cuda:0") + speechModel.save_weight(model.get_model_name()+"_save")