acrn-hypervisor/hypervisor/arch/x86/guest/guest.c

823 lines
21 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <hypervisor.h>
#include <bsp_extern.h>
#include <multiboot.h>
#define ACRN_DBG_GUEST 6
/* for VM0 e820 */
uint32_t e820_entries;
struct e820_entry e820[E820_MAX_ENTRIES];
struct e820_mem_params e820_mem;
struct page_walk_info {
uint64_t top_entry; /* Top level paging structure entry */
int level;
uint32_t width;
bool is_user_mode;
bool is_write_access;
bool is_inst_fetch;
bool pse; /* CR4.PSE for 32bit paing,
* true for PAE/4-level paing */
bool wp; /* CR0.WP */
bool nxe; /* MSR_IA32_EFER_NXE_BIT */
};
inline bool
is_vm0(struct vm *vm)
{
return (vm->attr.boot_idx & 0x7FU) == 0;
}
inline struct vcpu *vcpu_from_vid(struct vm *vm, int vcpu_id)
{
int i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
if (vcpu->vcpu_id == vcpu_id)
return vcpu;
}
return NULL;
}
inline struct vcpu *vcpu_from_pid(struct vm *vm, uint16_t pcpu_id)
{
int i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
if (vcpu->pcpu_id == pcpu_id)
return vcpu;
}
return NULL;
}
inline struct vcpu *get_primary_vcpu(struct vm *vm)
{
int i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
if (is_vcpu_bsp(vcpu))
return vcpu;
}
return NULL;
}
inline uint64_t vcpumask2pcpumask(struct vm *vm, uint64_t vdmask)
{
int vcpu_id;
uint64_t dmask = 0;
struct vcpu *vcpu;
while ((vcpu_id = ffs64(vdmask)) >= 0) {
bitmap_clear(vcpu_id, &vdmask);
vcpu = vcpu_from_vid(vm, vcpu_id);
ASSERT(vcpu != NULL, "vcpu_from_vid failed");
bitmap_set(vcpu->pcpu_id, &dmask);
}
return dmask;
}
inline bool vm_lapic_disabled(struct vm *vm)
{
int i;
struct vcpu *vcpu;
foreach_vcpu(i, vm, vcpu) {
if (vlapic_enabled(vcpu->arch_vcpu.vlapic))
return false;
}
return true;
}
enum vm_paging_mode get_vcpu_paging_mode(struct vcpu *vcpu)
{
struct run_context *cur_context =
&vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context];
enum vm_cpu_mode cpu_mode;
cpu_mode = get_vcpu_mode(vcpu);
if (cpu_mode == CPU_MODE_REAL)
return PAGING_MODE_0_LEVEL;
else if (cpu_mode == CPU_MODE_PROTECTED) {
if ((cur_context->cr4 & CR4_PAE) != 0U)
return PAGING_MODE_3_LEVEL;
else if ((cur_context->cr0 & CR0_PG) != 0U)
return PAGING_MODE_2_LEVEL;
return PAGING_MODE_0_LEVEL;
} else /* compatibility or 64bit mode */
return PAGING_MODE_4_LEVEL;
}
/* TODO: Add code to check for Revserved bits, SMAP and PKE when do translation
* during page walk */
static int _gva2gpa_common(struct vcpu *vcpu, struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
int i, index;
uint32_t shift;
uint8_t *base;
uint64_t entry;
uint64_t addr, page_size;
int ret = 0;
int fault = 0;
if (pw_info->level < 1)
return -EINVAL;
addr = pw_info->top_entry;
for (i = pw_info->level - 1; i >= 0; i--) {
addr = addr & IA32E_REF_MASK;
base = GPA2HVA(vcpu->vm, addr);
if (base == NULL) {
ret = -EFAULT;
goto out;
}
shift = i * pw_info->width + 12;
index = (gva >> shift) & ((1UL << pw_info->width) - 1);
page_size = 1UL << shift;
if (pw_info->width == 10)
/* 32bit entry */
entry = *((uint32_t *)(base + 4 * index));
else
entry = *((uint64_t *)(base + 8 * index));
/* check if the entry present */
if ((entry & MMU_32BIT_PDE_P) == 0U) {
ret = -EFAULT;
goto out;
}
/* check for R/W */
if (pw_info->is_write_access && ((entry & MMU_32BIT_PDE_RW) == 0U)) {
/* Case1: Supermode and wp is 1
* Case2: Usermode */
if (!(!pw_info->is_user_mode && !pw_info->wp))
fault = 1;
}
/* check for nx, since for 32-bit paing, the XD bit is
* reserved(0), use the same logic as PAE/4-level paging */
if (pw_info->is_inst_fetch && pw_info->nxe &&
((entry & MMU_MEM_ATTR_BIT_EXECUTE_DISABLE) != 0U))
fault = 1;
/* check for U/S */
if (((entry & MMU_32BIT_PDE_US) == 0U) && pw_info->is_user_mode)
fault = 1;
if (pw_info->pse && (i > 0 && ((entry & MMU_32BIT_PDE_PS) != 0U)))
break;
addr = entry;
}
entry >>= shift;
/* shift left 12bit more and back to clear XD/Prot Key/Ignored bits */
entry <<= (shift + 12);
entry >>= 12;
*gpa = entry | (gva & (page_size - 1));
out:
if (fault != 0) {
ret = -EFAULT;
*err_code |= PAGE_FAULT_P_FLAG;
}
return ret;
}
static int _gva2gpa_pae(struct vcpu *vcpu, struct page_walk_info *pw_info,
uint64_t gva, uint64_t *gpa, uint32_t *err_code)
{
int index;
uint64_t *base;
uint64_t entry;
uint64_t addr;
int ret;
addr = pw_info->top_entry & 0xFFFFFFF0U;
base = GPA2HVA(vcpu->vm, addr);
if (base == NULL) {
ret = -EFAULT;
goto out;
}
index = (gva >> 30) & 0x3UL;
entry = base[index];
if ((entry & MMU_32BIT_PDE_P) == 0U) {
ret = -EFAULT;
goto out;
}
pw_info->level = 2;
pw_info->top_entry = entry;
ret = _gva2gpa_common(vcpu, pw_info, gva, gpa, err_code);
out:
return ret;
}
/* Refer to SDM Vol.3A 6-39 section 6.15 for the format of paging fault error
* code.
*
* Caller should set the contect of err_code properly according to the address
* usage when calling this function:
* - If it is an address for write, set PAGE_FAULT_WR_FLAG in err_code.
* - If it is an address for instruction featch, set PAGE_FAULT_ID_FLAG in
* err_code.
* Caller should check the return value to confirm if the function success or
* not.
* If a protection volation detected during page walk, this function still will
* give the gpa translated, it is up to caller to decide if it need to inject a
* #PF or not.
* - Return 0 for success.
* - Return -EINVAL for invalid parameter.
* - Return -EFAULT for paging fault, and refer to err_code for paging fault
* error code.
*/
int gva2gpa(struct vcpu *vcpu, uint64_t gva, uint64_t *gpa,
uint32_t *err_code)
{
struct run_context *cur_context =
&vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context];
enum vm_paging_mode pm = get_vcpu_paging_mode(vcpu);
struct page_walk_info pw_info;
int ret = 0;
if ((gpa == NULL) || (err_code == NULL))
return -EINVAL;
*gpa = 0;
pw_info.top_entry = cur_context->cr3;
pw_info.level = pm;
pw_info.is_write_access = !!(*err_code & PAGE_FAULT_WR_FLAG);
pw_info.is_inst_fetch = !!(*err_code & PAGE_FAULT_ID_FLAG);
pw_info.is_user_mode = ((exec_vmread(VMX_GUEST_CS_SEL) & 0x3UL) == 3UL);
pw_info.pse = true;
pw_info.nxe = cur_context->ia32_efer & MSR_IA32_EFER_NXE_BIT;
pw_info.wp = !!(cur_context->cr0 & CR0_WP);
*err_code &= ~PAGE_FAULT_P_FLAG;
if (pm == PAGING_MODE_4_LEVEL) {
pw_info.width = 9;
ret = _gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else if(pm == PAGING_MODE_3_LEVEL) {
pw_info.width = 9;
ret = _gva2gpa_pae(vcpu, &pw_info, gva, gpa, err_code);
} else if (pm == PAGING_MODE_2_LEVEL) {
pw_info.width = 10;
pw_info.pse = !!(cur_context->cr4 & CR4_PSE);
pw_info.nxe = false;
ret = _gva2gpa_common(vcpu, &pw_info, gva, gpa, err_code);
} else
*gpa = gva;
if (ret == -EFAULT) {
if (pw_info.is_user_mode)
*err_code |= PAGE_FAULT_US_FLAG;
}
return ret;
}
static inline int32_t _copy_gpa(struct vm *vm, void *h_ptr, uint64_t gpa,
uint32_t size, uint32_t fix_pg_size, bool cp_from_vm)
{
uint64_t hpa;
uint32_t off_in_pg, len, pg_size;
void *g_ptr;
hpa = _gpa2hpa(vm, gpa, &pg_size);
if (pg_size == 0) {
pr_err("GPA2HPA not found");
return -EINVAL;
}
if (fix_pg_size != 0)
pg_size = fix_pg_size;
off_in_pg = gpa & (pg_size - 1);
len = (size > pg_size - off_in_pg) ?
(pg_size - off_in_pg) : size;
g_ptr = HPA2HVA(hpa);
if (cp_from_vm)
memcpy_s(h_ptr, len, g_ptr, len);
else
memcpy_s(g_ptr, len, h_ptr, len);
return len;
}
static inline int copy_gpa(struct vm *vm, void *h_ptr, uint64_t gpa,
uint32_t size, bool cp_from_vm)
{
int32_t len;
if (vm == NULL) {
pr_err("guest phy addr copy need vm param");
return -EINVAL;
}
do {
len = _copy_gpa(vm, h_ptr, gpa, size, 0, cp_from_vm);
if (len < 0)
return len;
gpa += len;
h_ptr += len;
size -= len;
} while (size > 0);
return 0;
}
static inline int copy_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code, bool cp_from_vm)
{
uint64_t gpa = 0;
int32_t len, ret;
if (vcpu == NULL) {
pr_err("guest virt addr copy need vcpu param");
return -EINVAL;
}
if (err_code == NULL) {
pr_err("guest virt addr copy need err_code param");
return -EINVAL;
}
do {
ret = gva2gpa(vcpu, gva, &gpa, err_code);
if (ret < 0) {
pr_err("error[%d] in GVA2GPA, err_code=0x%x",
ret, *err_code);
return ret;
}
len = ret = _copy_gpa(vcpu->vm, h_ptr, gpa, size,
PAGE_SIZE_4K, cp_from_vm);
if (ret < 0)
return ret;
gva += len;
h_ptr += len;
size -= len;
} while (size > 0);
return 0;
}
/* Caller(Guest) should make sure gpa is continuous.
* - gpa from hypercall input which from kernel stack is gpa continuous, not
* support kernel stack from vmap
* - some other gpa from hypercall parameters, VHM should make sure it's
* continuous
*/
int copy_from_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 1);
}
int copy_to_gpa(struct vm *vm, void *h_ptr, uint64_t gpa, uint32_t size)
{
return copy_gpa(vm, h_ptr, gpa, size, 0);
}
int copy_from_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, 1);
}
int copy_to_gva(struct vcpu *vcpu, void *h_ptr, uint64_t gva,
uint32_t size, uint32_t *err_code)
{
return copy_gva(vcpu, h_ptr, gva, size, err_code, 0);
}
void init_e820(void)
{
unsigned int i;
if (boot_regs[0] == MULTIBOOT_INFO_MAGIC) {
struct multiboot_info *mbi = (struct multiboot_info *)
(HPA2HVA((uint64_t)boot_regs[1]));
pr_info("Multiboot info detected\n");
if ((mbi->mi_flags & 0x40U) != 0U) {
struct multiboot_mmap *mmap =
(struct multiboot_mmap *)
HPA2HVA((uint64_t)mbi->mi_mmap_addr);
e820_entries = mbi->mi_mmap_length/
sizeof(struct multiboot_mmap);
if (e820_entries > E820_MAX_ENTRIES) {
pr_err("Too many E820 entries %d\n",
e820_entries);
e820_entries = E820_MAX_ENTRIES;
}
dev_dbg(ACRN_DBG_GUEST,
"mmap length 0x%x addr 0x%x entries %d\n",
mbi->mi_mmap_length, mbi->mi_mmap_addr,
e820_entries);
for (i = 0; i < e820_entries; i++) {
e820[i].baseaddr = mmap[i].baseaddr;
e820[i].length = mmap[i].length;
e820[i].type = mmap[i].type;
dev_dbg(ACRN_DBG_GUEST,
"mmap table: %d type: 0x%x\n",
i, mmap[i].type);
dev_dbg(ACRN_DBG_GUEST,
"Base: 0x%016llx length: 0x%016llx",
mmap[i].baseaddr, mmap[i].length);
}
}
} else
ASSERT(false, "no multiboot info found");
}
void obtain_e820_mem_info(void)
{
unsigned int i;
struct e820_entry *entry;
e820_mem.mem_bottom = UINT64_MAX;
e820_mem.mem_top = 0x00;
e820_mem.total_mem_size = 0;
e820_mem.max_ram_blk_base = 0;
e820_mem.max_ram_blk_size = 0;
for (i = 0; i < e820_entries; i++) {
entry = &e820[i];
if (e820_mem.mem_bottom > entry->baseaddr)
e820_mem.mem_bottom = entry->baseaddr;
if (entry->baseaddr + entry->length
> e820_mem.mem_top) {
e820_mem.mem_top = entry->baseaddr
+ entry->length;
}
if (entry->type == E820_TYPE_RAM) {
e820_mem.total_mem_size += entry->length;
if (entry->baseaddr == UOS_DEFAULT_START_ADDR) {
e820_mem.max_ram_blk_base =
entry->baseaddr;
e820_mem.max_ram_blk_size = entry->length;
}
}
}
}
static void rebuild_vm0_e820(void)
{
unsigned int i;
uint64_t entry_start;
uint64_t entry_end;
uint64_t hv_start = CONFIG_RAM_START;
uint64_t hv_end = hv_start + CONFIG_RAM_SIZE;
struct e820_entry *entry, new_entry = {0};
/* hypervisor mem need be filter out from e820 table
* it's hv itself + other hv reserved mem like vgt etc
*/
for (i = 0; i < e820_entries; i++) {
entry = &e820[i];
entry_start = entry->baseaddr;
entry_end = entry->baseaddr + entry->length;
/* No need handle in these cases*/
if (entry->type != E820_TYPE_RAM || entry_end <= hv_start
|| entry_start >= hv_end) {
continue;
}
/* filter out hv mem and adjust length of this entry*/
if (entry_start < hv_start && entry_end <= hv_end) {
entry->length = hv_start - entry_start;
continue;
}
/* filter out hv mem and need to create a new entry*/
if (entry_start < hv_start && entry_end > hv_end) {
entry->length = hv_start - entry_start;
new_entry.baseaddr = hv_end;
new_entry.length = entry_end - hv_end;
new_entry.type = E820_TYPE_RAM;
continue;
}
/* This entry is within the range of hv mem
* change to E820_TYPE_RESERVED
*/
if (entry_start >= hv_start && entry_end <= hv_end) {
entry->type = E820_TYPE_RESERVED;
continue;
}
if (entry_start >= hv_start && entry_start < hv_end
&& entry_end > hv_end) {
entry->baseaddr = hv_end;
entry->length = entry_end - hv_end;
continue;
}
}
if (new_entry.length > 0) {
e820_entries++;
ASSERT(e820_entries <= E820_MAX_ENTRIES,
"e820 entry overflow");
entry = &e820[e820_entries - 1];
entry->baseaddr = new_entry.baseaddr;
entry->length = new_entry.length;
entry->type = new_entry.type;
}
e820_mem.total_mem_size -= CONFIG_RAM_SIZE;
}
int prepare_vm0_memmap_and_e820(struct vm *vm)
{
unsigned int i;
uint32_t attr_wb = (IA32E_EPT_R_BIT |
IA32E_EPT_W_BIT |
IA32E_EPT_X_BIT |
IA32E_EPT_WB);
uint32_t attr_uc = (IA32E_EPT_R_BIT |
IA32E_EPT_W_BIT |
IA32E_EPT_X_BIT |
IA32E_EPT_UNCACHED);
struct e820_entry *entry;
ASSERT(is_vm0(vm), "This func only for vm0");
rebuild_vm0_e820();
dev_dbg(ACRN_DBG_GUEST,
"vm0: bottom memory - 0x%llx, top memory - 0x%llx\n",
e820_mem.mem_bottom, e820_mem.mem_top);
/* create real ept map for all ranges with UC */
ept_mmap(vm, e820_mem.mem_bottom, e820_mem.mem_bottom,
(e820_mem.mem_top - e820_mem.mem_bottom),
MAP_MMIO, attr_uc);
/* update ram entries to WB attr */
for (i = 0; i < e820_entries; i++) {
entry = &e820[i];
if (entry->type == E820_TYPE_RAM)
ept_mmap(vm, entry->baseaddr, entry->baseaddr,
entry->length, MAP_MEM, attr_wb);
}
dev_dbg(ACRN_DBG_GUEST, "VM0 e820 layout:\n");
for (i = 0; i < e820_entries; i++) {
entry = &e820[i];
dev_dbg(ACRN_DBG_GUEST,
"e820 table: %d type: 0x%x", i, entry->type);
dev_dbg(ACRN_DBG_GUEST,
"BaseAddress: 0x%016llx length: 0x%016llx\n",
entry->baseaddr, entry->length);
}
/* unmap hypervisor itself for safety
* will cause EPT violation if sos accesses hv memory
*/
ept_mmap(vm, CONFIG_RAM_START, CONFIG_RAM_START,
CONFIG_RAM_SIZE, MAP_UNMAP, 0);
return 0;
}
uint64_t e820_alloc_low_memory(uint32_t size)
{
uint32_t i;
struct e820_entry *entry, *new_entry;
/* We want memory in page boundary and integral multiple of pages */
size = ROUND_PAGE_UP(size);
for (i = 0; i < e820_entries; i++) {
entry = &e820[i];
uint64_t start, end, length;
start = ROUND_PAGE_UP(entry->baseaddr);
end = ROUND_PAGE_DOWN(entry->baseaddr + entry->length);
length = end - start;
length = (end > start) ? (end - start) : 0;
/* Search for available low memory */
if ((entry->type != E820_TYPE_RAM)
|| (length < size)
|| (start + size > MEM_1M)) {
continue;
}
/* found exact size of e820 entry */
if (length == size) {
entry->type = E820_TYPE_RESERVED;
e820_mem.total_mem_size -= size;
return start;
}
/*
* found entry with available memory larger than requested
* alocate memory from the end of this entry at page boundary
*/
new_entry = &e820[e820_entries];
new_entry->type = E820_TYPE_RESERVED;
new_entry->baseaddr = end - size;
new_entry->length = entry->baseaddr +
entry->length - new_entry->baseaddr;
/* Shrink the existing entry and total available memory */
entry->length -= new_entry->length;
e820_mem.total_mem_size -= new_entry->length;
e820_entries++;
return new_entry->baseaddr;
}
pr_fatal("Can't allocate memory under 1M from E820\n");
return ACRN_INVALID_HPA;
}
#ifdef CONFIG_START_VM0_BSP_64BIT
/*******************************************************************
* GUEST initial page table
*
* guest starts with long mode, HV needs to prepare Guest identity
* mapped page table.
* For SOS:
* Guest page tables cover 0~4G space with 2M page size, will use
* 6 pages memory for page tables.
* For UOS(Trusty not enabled):
* Guest page tables cover 0~4G space with 2M page size, will use
* 6 pages memory for page tables.
* For UOS(Trusty enabled):
* Guest page tables cover 0~4G and trusy memory space with 2M page size,
* will use 7 pages memory for page tables.
* This API assume that the trusty memory is remapped to guest physical address
* of 511G to 511G + 16MB
*
* FIXME: here the guest init page table will occupy at most
* GUEST_INIT_PT_PAGE_NUM pages. Some check here:
* - guest page table space should not override trampoline code area
* (it's a little tricky here, as under current identical mapping, HV & SOS
* share same memory under 1M; under uefi boot mode, the defered AP startup
* need trampoline code area which reserved by uefi stub keep there
* no change even after SOS startup)
* - guest page table space should not override possible RSDP fix segment
*
* Anyway, it's a tmp solution, the init page tables should be totally removed
* after guest realmode/32bit no paging mode got supported.
******************************************************************/
#define GUEST_INIT_PAGE_TABLE_SKIP_SIZE 0x8000UL
#define GUEST_INIT_PAGE_TABLE_START (trampoline_start16_paddr + \
GUEST_INIT_PAGE_TABLE_SKIP_SIZE)
#define GUEST_INIT_PT_PAGE_NUM 7
#define RSDP_F_ADDR 0xE0000
uint64_t create_guest_initial_paging(struct vm *vm)
{
uint64_t i = 0;
uint64_t entry = 0;
uint64_t entry_num = 0;
uint64_t pdpt_base_paddr = 0;
uint64_t pd_base_paddr = 0;
uint64_t table_present = 0;
uint64_t table_offset = 0;
void *addr = NULL;
void *pml4_addr = GPA2HVA(vm, GUEST_INIT_PAGE_TABLE_START);
ASSERT((GUEST_INIT_PAGE_TABLE_START + 7 * PAGE_SIZE_4K) <
RSDP_F_ADDR, "RSDP fix segment could be override");
if (GUEST_INIT_PAGE_TABLE_SKIP_SIZE <
(unsigned long)&_ld_trampoline_size) {
panic("guest init PTs override trampoline code");
}
/* Using continuous memory for guest page tables, the total 4K page
* number for it(without trusty) is GUEST_INIT_PT_PAGE_NUM-1.
* here make sure they are init as 0 (page entry no present)
*/
memset(pml4_addr, 0, PAGE_SIZE_4K * GUEST_INIT_PT_PAGE_NUM-1);
/* Write PML4E */
table_present = (IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT);
/* PML4 used 1 page, skip it to fetch PDPT */
pdpt_base_paddr = GUEST_INIT_PAGE_TABLE_START + PAGE_SIZE_4K;
entry = pdpt_base_paddr | table_present;
MEM_WRITE64(pml4_addr, entry);
/* Write PDPTE, PDPT used 1 page, skip it to fetch PD */
pd_base_paddr = pdpt_base_paddr + PAGE_SIZE_4K;
addr = pml4_addr + PAGE_SIZE_4K;
/* Guest page tables cover 0~4G space with 2M page size */
for (i = 0; i < 4; i++) {
entry = ((pd_base_paddr + (i * PAGE_SIZE_4K))
| table_present);
MEM_WRITE64(addr, entry);
addr += IA32E_COMM_ENTRY_SIZE;
}
/* Write PDE, PT used 4 pages */
table_present = (IA32E_PDPTE_PS_BIT
| IA32E_COMM_P_BIT
| IA32E_COMM_RW_BIT);
/* Totally 2048(512*4) entries with 2M page size for 0~4G*/
entry_num = IA32E_NUM_ENTRIES * 4;
addr = pml4_addr + 2 * PAGE_SIZE_4K;
for (i = 0; i < entry_num; i++) {
entry = (i * (1 << MMU_PDE_PAGE_SHIFT)) | table_present;
MEM_WRITE64(addr, entry);
addr += IA32E_COMM_ENTRY_SIZE;
}
/* For UOS, if trusty is enabled,
* need to setup tempory page table for trusty
* FIXME: this is a tempory solution for trusty enabling,
* the final solution is that vSBL will setup guest page tables
*/
if (vm->sworld_control.sworld_enabled && !is_vm0(vm)) {
/* clear page entry for trusty */
memset(pml4_addr + 6 * PAGE_SIZE_4K, 0, PAGE_SIZE_4K);
/* Write PDPTE for trusy memory, PD will use 7th page */
pd_base_paddr = GUEST_INIT_PAGE_TABLE_START +
(6 * PAGE_SIZE_4K);
table_offset =
IA32E_PDPTE_INDEX_CALC(TRUSTY_EPT_REBASE_GPA);
addr = (pml4_addr + PAGE_SIZE_4K + table_offset);
table_present = (IA32E_COMM_P_BIT | IA32E_COMM_RW_BIT);
entry = (pd_base_paddr | table_present);
MEM_WRITE64(addr, entry);
/* Write PDE for trusty with 2M page size */
entry_num = TRUSTY_MEMORY_SIZE / (1 << MMU_PDE_PAGE_SHIFT);
addr = pml4_addr + 6 * PAGE_SIZE_4K;
table_present = (IA32E_PDPTE_PS_BIT
| IA32E_COMM_P_BIT
| IA32E_COMM_RW_BIT);
for (i = 0; i < entry_num; i++) {
entry = (TRUSTY_EPT_REBASE_GPA +
(i * (1 << MMU_PDE_PAGE_SHIFT)))
| table_present;
MEM_WRITE64(addr, entry);
addr += IA32E_COMM_ENTRY_SIZE;
}
}
return GUEST_INIT_PAGE_TABLE_START;
}
#endif
/*******************************************************************
* GUEST initial GDT table
*
* If guest starts with protected mode, HV needs to prepare Guest GDT.
******************************************************************/
#define GUEST_INIT_GDT_SKIP_SIZE 0x8000UL
#define GUEST_INIT_GDT_START (trampoline_start16_paddr + \
GUEST_INIT_GDT_SKIP_SIZE)
/* The GDT defined below compatible with linux kernel */
#define GUEST_INIT_GDT_DESC_0 (0x0)
#define GUEST_INIT_GDT_DESC_1 (0x0)
#define GUEST_INIT_GDT_DESC_2 (0x00CF9B000000FFFFUL) /* Linear Code */
#define GUEST_INIT_GDT_DESC_3 (0x00CF93000000FFFFUL) /* Linear Data */
static const uint64_t guest_init_gdt[] = {
GUEST_INIT_GDT_DESC_0,
GUEST_INIT_GDT_DESC_1,
GUEST_INIT_GDT_DESC_2,
GUEST_INIT_GDT_DESC_3,
};
uint32_t create_guest_init_gdt(struct vm *vm, uint32_t *limit)
{
void *gtd_addr = GPA2HVA(vm, GUEST_INIT_GDT_START);
*limit = sizeof(guest_init_gdt) - 1;
memcpy_s(gtd_addr, 64, guest_init_gdt, sizeof(guest_init_gdt));
return GUEST_INIT_GDT_START;
};