acrn-hypervisor/hypervisor/arch/x86/vmx.c

1336 lines
38 KiB
C

/*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <hypervisor.h>
#include <hv_lib.h>
#include <acrn_common.h>
#include <hv_arch.h>
#include <hv_debug.h>
#ifdef CONFIG_EFI_STUB
#include <acrn_efi.h>
extern struct efi_ctx* efi_ctx;
#endif
#define PAT_POWER_ON_VALUE (PAT_MEM_TYPE_WB + \
((uint64_t)PAT_MEM_TYPE_WT << 8) + \
((uint64_t)PAT_MEM_TYPE_WC << 16) + \
((uint64_t)PAT_MEM_TYPE_UC << 24) + \
((uint64_t)PAT_MEM_TYPE_WB << 32) + \
((uint64_t)PAT_MEM_TYPE_WT << 40) + \
((uint64_t)PAT_MEM_TYPE_UCM << 48) + \
((uint64_t)PAT_MEM_TYPE_UC << 56))
static inline int exec_vmxon(void *addr)
{
uint64_t rflags;
uint64_t tmp64;
int status = 0;
if (addr == NULL)
status = -EINVAL;
ASSERT(status == 0, "Incorrect arguments");
/* Read Feature ControL MSR */
tmp64 = msr_read(MSR_IA32_FEATURE_CONTROL);
/* Determine if feature control is locked */
if (tmp64 & MSR_IA32_FEATURE_CONTROL_LOCK) {
/* See if VMX enabled */
if (!(tmp64 & MSR_IA32_FEATURE_CONTROL_VMX_NO_SMX)) {
/* Return error - VMX can't be enabled */
status = -EINVAL;
}
} else {
/* Lock and enable VMX support */
tmp64 |= (MSR_IA32_FEATURE_CONTROL_LOCK |
MSR_IA32_FEATURE_CONTROL_VMX_NO_SMX);
msr_write(MSR_IA32_FEATURE_CONTROL, tmp64);
}
/* Ensure previous operations successful */
if (status == 0) {
/* Turn VMX on */
asm volatile ("mov %1, %%rax\n"
"vmxon (%%rax)\n"
"pushfq\n"
"pop %0\n":"=r" (rflags)
: "r"(addr)
: "%rax", "cc", "memory");
/* if carry and zero flags are clear operation success */
if (rflags & (RFLAGS_C | RFLAGS_Z))
status = -EINVAL;
}
/* Return result to caller */
return status;
}
int exec_vmxon_instr(void)
{
uint64_t tmp64;
uint32_t tmp32;
int ret_val = -EINVAL;
void *vmxon_region_va;
uint64_t vmxon_region_pa;
/* Allocate page aligned memory for VMXON region */
vmxon_region_va = alloc_page();
if (vmxon_region_va != 0) {
/* Initialize vmxon page with revision id from IA32 VMX BASIC
* MSR
*/
tmp32 = msr_read(MSR_IA32_VMX_BASIC);
memcpy_s((uint32_t *) vmxon_region_va, 4, &tmp32, 4);
/* Turn on CR0.NE and CR4.VMXE */
CPU_CR_READ(cr0, &tmp64);
CPU_CR_WRITE(cr0, tmp64 | CR0_NE);
CPU_CR_READ(cr4, &tmp64);
CPU_CR_WRITE(cr4, tmp64 | CR4_VMXE);
/* Turn ON VMX */
vmxon_region_pa = HVA2HPA(vmxon_region_va);
ret_val = exec_vmxon(&vmxon_region_pa);
}
return ret_val;
}
int exec_vmclear(void *addr)
{
uint64_t rflags;
int status = 0;
if (addr == NULL)
status = -EINVAL;
ASSERT(status == 0, "Incorrect arguments");
asm volatile (
"mov %1, %%rax\n"
"vmclear (%%rax)\n"
"pushfq\n"
"pop %0\n":"=r" (rflags)
: "r"(addr)
: "%rax", "cc", "memory");
/* if carry and zero flags are clear operation success */
if (rflags & (RFLAGS_C | RFLAGS_Z))
status = -EINVAL;
return status;
}
int exec_vmptrld(void *addr)
{
uint64_t rflags;
int status = 0;
if (addr == NULL)
status = -EINVAL;
ASSERT(status == 0, "Incorrect arguments");
asm volatile (
"mov %1, %%rax\n"
"vmptrld (%%rax)\n"
"pushfq\n"
"pop %0\n"
: "=r" (rflags)
: "r"(addr)
: "%rax", "cc");
/* if carry and zero flags are clear operation success */
if (rflags & (RFLAGS_C | RFLAGS_Z))
status = -EINVAL;
return status;
}
uint64_t exec_vmread(uint32_t field)
{
uint64_t value;
asm volatile (
"vmread %%rdx, %%rax "
: "=a" (value)
: "d"(field)
: "cc");
return value;
}
uint64_t exec_vmread64(uint32_t field_full)
{
uint64_t low;
low = exec_vmread(field_full);
#ifdef __i386__
low += exec_vmread(field_full + 1) << 32;
#endif
return low;
}
void exec_vmwrite(uint32_t field, uint64_t value)
{
asm volatile (
"vmwrite %%rax, %%rdx "
: : "a" (value), "d"(field)
: "cc");
}
void exec_vmwrite64(unsigned int field_full, uint64_t value)
{
#ifdef __i386__
int low = (int)(value & 0xFFFFFFFF);
int high = (int)((value >> 32) & 0xFFFFFFFF);
exec_vmwrite(field_full, low);
exec_vmwrite(field_full + 1, high);
#else
exec_vmwrite(field_full, value);
#endif
}
#define HV_ARCH_VMX_GET_CS(SEL) \
{ \
asm volatile ("movw %%cs, %%ax" : "=a"(sel)); \
}
uint32_t get_cs_access_rights(void)
{
uint32_t usable_ar;
uint16_t sel_value;
asm volatile ("movw %%cs, %%ax" : "=a" (sel_value));
asm volatile ("lar %%eax, %%eax" : "=a" (usable_ar) : "a"(sel_value));
usable_ar = usable_ar >> 8;
usable_ar &= 0xf0ff; /* clear bits 11:8 */
return usable_ar;
}
static void init_guest_state(struct vcpu *vcpu)
{
uint64_t field;
uint64_t value;
uint32_t value32;
uint64_t value64;
uint16_t sel;
uint32_t limit, access, base;
uint32_t ldt_idx = 0x38;
int es = 0, ss = 0, ds = 0, fs = 0, gs = 0, data32_idx;
uint32_t lssd32_idx = 0x70;
struct vm *vm = vcpu->vm;
struct run_context *cur_context =
&vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context];
pr_dbg("*********************");
pr_dbg("Initialize guest state");
pr_dbg("*********************");
/*************************************************/
/* Set up CRx */
/*************************************************/
pr_dbg("Natural-width********");
/* Setup guest control register values */
/* Set up guest CRO field */
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/*cur_context->cr0 = (CR0_CD | CR0_NW | CR0_ET | CR0_NE);*/
cur_context->cr0 = CR0_ET | CR0_NE;
cur_context->cr3 = 0;
cur_context->cr4 = CR4_VMXE;
} else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
cur_context->cr0 = ((uint64_t)CR0_PG | CR0_PE | CR0_NE);
cur_context->cr4 = ((uint64_t)CR4_PSE | CR4_PAE | CR4_MCE | CR4_VMXE);
cur_context->cr3 = vm->arch_vm.guest_init_pml4 | CR3_PWT;
}
value = cur_context->cr0;
field = VMX_GUEST_CR0;
exec_vmwrite(field, value & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR0: 0x%016llx ", value);
/* Set up guest CR3 field */
value = cur_context->cr3;
field = VMX_GUEST_CR3;
exec_vmwrite(field, value & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR3: 0x%016llx ", value);
/* Set up guest CR4 field */
value = cur_context->cr4;
field = VMX_GUEST_CR4;
exec_vmwrite(field, value & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR4: 0x%016llx ", value);
/***************************************************/
/* Set up Flags - the value of RFLAGS on VM entry */
/***************************************************/
field = VMX_GUEST_RFLAGS;
cur_context->rflags = 0x2; /* Bit 1 is a active high reserved bit */
exec_vmwrite(field, cur_context->rflags);
pr_dbg("VMX_GUEST_RFLAGS: 0x%016llx ", value);
/***************************************************/
/* Set Code Segment - CS */
/***************************************************/
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/* AP is initialized with real mode
* and CS value is left shift 8 bits from sipi vector;
*/
sel = vcpu->arch_vcpu.sipi_vector << 8;
limit = 0xffff;
access = 0x9F;
base = sel << 4;
} else {
HV_ARCH_VMX_GET_CS(sel);
access = get_cs_access_rights();
limit = 0xffffffff;
base = 0;
}
/* Selector */
field = VMX_GUEST_CS_SEL;
exec_vmwrite(field, sel);
pr_dbg("VMX_GUEST_CS_SEL: 0x%x ", sel);
/* Limit */
field = VMX_GUEST_CS_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_CS_LIMIT: 0x%x ", limit);
/* Access */
field = VMX_GUEST_CS_ATTR;
exec_vmwrite(field, access);
pr_dbg("VMX_GUEST_CS_ATTR: 0x%x ", access);
/* Base */
field = VMX_GUEST_CS_BASE;
exec_vmwrite(field, base);
pr_dbg("VMX_GUEST_CS_BASE: 0x%016llx ", base);
/***************************************************/
/* Set up instruction pointer and stack pointer */
/***************************************************/
/* Set up guest instruction pointer */
field = VMX_GUEST_RIP;
if (get_vcpu_mode(vcpu) == REAL_MODE)
value32 = 0;
else
value32 = (uint32_t) ((uint64_t) vcpu->entry_addr & 0xFFFFFFFF);
pr_dbg("GUEST RIP on VMEntry %x ", value32);
exec_vmwrite(field, value32);
if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
/* Set up guest stack pointer to 0 */
field = VMX_GUEST_RSP;
value32 = 0;
pr_dbg("GUEST RSP on VMEntry %x ",
value32);
exec_vmwrite(field, value32);
}
/***************************************************/
/* Set up GDTR, IDTR and LDTR */
/***************************************************/
/* GDTR - Global Descriptor Table */
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/* Base */
base = 0;
/* Limit */
limit = 0xFFFF;
} else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
descriptor_table gdtb;
/* Base *//* TODO: Should guest GDTB point to host GDTB ? */
/* Obtain the current global descriptor table base */
asm volatile ("sgdt %0" : : "m" (gdtb));
value32 = gdtb.limit;
if ((gdtb.base >> 47) & 0x1)
gdtb.base |= 0xffff000000000000ull;
base = gdtb.base;
/* Limit */
limit = HOST_GDT_SIZE - 1;
}
/* GDTR Base */
field = VMX_GUEST_GDTR_BASE;
exec_vmwrite(field, base);
pr_dbg("VMX_GUEST_GDTR_BASE: 0x%x ", base);
/* GDTR Limit */
field = VMX_GUEST_GDTR_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_GDTR_LIMIT: 0x%x ", limit);
/* IDTR - Interrupt Descriptor Table */
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/* Base */
base = 0;
/* Limit */
limit = 0xFFFF;
} else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
descriptor_table idtb ;
/* TODO: Should guest IDTR point to host IDTR ? */
asm volatile ("sidt %0"::"m" (idtb));
/* Limit */
limit = idtb.limit;
if ((idtb.base >> 47) & 0x1)
idtb.base |= 0xffff000000000000ull;
/* Base */
base = idtb.base;
}
/* IDTR Base */
field = VMX_GUEST_IDTR_BASE;
exec_vmwrite(field, base);
pr_dbg("VMX_GUEST_IDTR_BASE: 0x%x ", base);
/* IDTR Limit */
field = VMX_GUEST_IDTR_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_IDTR_LIMIT: 0x%x ", limit);
/***************************************************/
/* Debug register */
/***************************************************/
/* Set up guest Debug register */
field = VMX_GUEST_DR7;
value = 0x400;
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_DR7: 0x%016llx ", value);
/***************************************************/
/* ES, CS, SS, DS, FS, GS */
/***************************************************/
data32_idx = 0x10;
if (get_vcpu_mode(vcpu) == REAL_MODE) {
es = ss = ds = fs = gs = data32_idx;
limit = 0xffff;
} else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
asm volatile ("movw %%es, %%ax":"=a" (es));
asm volatile ("movw %%ss, %%ax":"=a" (ss));
asm volatile ("movw %%ds, %%ax":"=a" (ds));
asm volatile ("movw %%fs, %%ax":"=a" (fs));
asm volatile ("movw %%gs, %%ax":"=a" (gs));
limit = 0xffffffff;
}
/* Selector */
field = VMX_GUEST_ES_SEL;
exec_vmwrite(field, es);
pr_dbg("VMX_GUEST_ES_SEL: 0x%x ", es);
field = VMX_GUEST_SS_SEL;
exec_vmwrite(field, ss);
pr_dbg("VMX_GUEST_SS_SEL: 0x%x ", ss);
field = VMX_GUEST_DS_SEL;
exec_vmwrite(field, ds);
pr_dbg("VMX_GUEST_DS_SEL: 0x%x ", ds);
field = VMX_GUEST_FS_SEL;
exec_vmwrite(field, fs);
pr_dbg("VMX_GUEST_FS_SEL: 0x%x ", fs);
field = VMX_GUEST_GS_SEL;
exec_vmwrite(field, gs);
pr_dbg("VMX_GUEST_GS_SEL: 0x%x ", gs);
/* Limit */
field = VMX_GUEST_ES_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_ES_LIMIT: 0x%x ", limit);
field = VMX_GUEST_SS_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_SS_LIMIT: 0x%x ", limit);
field = VMX_GUEST_DS_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_DS_LIMIT: 0x%x ", limit);
field = VMX_GUEST_FS_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_FS_LIMIT: 0x%x ", limit);
field = VMX_GUEST_GS_LIMIT;
exec_vmwrite(field, limit);
pr_dbg("VMX_GUEST_GS_LIMIT: 0x%x ", limit);
/* Access */
if (get_vcpu_mode(vcpu) == REAL_MODE)
value32 = 0x0093;
else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE)
value32 = 0xc093;
field = VMX_GUEST_ES_ATTR;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_ES_ATTR: 0x%x ", value32);
field = VMX_GUEST_SS_ATTR;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_SS_ATTR: 0x%x ", value32);
field = VMX_GUEST_DS_ATTR;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_DS_ATTR: 0x%x ", value32);
field = VMX_GUEST_FS_ATTR;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_FS_ATTR: 0x%x ", value32);
field = VMX_GUEST_GS_ATTR;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_GS_ATTR: 0x%x ", value32);
/* Base */
value = 0;
field = VMX_GUEST_ES_BASE;
exec_vmwrite(field, es << 4);
pr_dbg("VMX_GUEST_ES_BASE: 0x%016llx ", value);
field = VMX_GUEST_SS_BASE;
exec_vmwrite(field, ss << 4);
pr_dbg("VMX_GUEST_SS_BASE: 0x%016llx ", value);
field = VMX_GUEST_DS_BASE;
exec_vmwrite(field, ds << 4);
pr_dbg("VMX_GUEST_DS_BASE: 0x%016llx ", value);
field = VMX_GUEST_FS_BASE;
exec_vmwrite(field, fs << 4);
pr_dbg("VMX_GUEST_FS_BASE: 0x%016llx ", value);
field = VMX_GUEST_GS_BASE;
exec_vmwrite(field, gs << 4);
pr_dbg("VMX_GUEST_GS_BASE: 0x%016llx ", value);
/***************************************************/
/* LDT and TR (dummy) */
/***************************************************/
field = VMX_GUEST_LDTR_SEL;
value32 = ldt_idx;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_LDTR_SEL: 0x%x ", value32);
field = VMX_GUEST_LDTR_LIMIT;
value32 = 0xffffffff;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_LDTR_LIMIT: 0x%x ", value32);
field = VMX_GUEST_LDTR_ATTR;
value32 = 0x10000;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_LDTR_ATTR: 0x%x ", value32);
field = VMX_GUEST_LDTR_BASE;
value32 = 0x00;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_LDTR_BASE: 0x%x ", value32);
/* Task Register */
field = VMX_GUEST_TR_SEL;
value32 = lssd32_idx;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_TR_SEL: 0x%x ", value32);
field = VMX_GUEST_TR_LIMIT;
value32 = 0xff;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_TR_LIMIT: 0x%x ", value32);
field = VMX_GUEST_TR_ATTR;
value32 = 0x8b;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_TR_ATTR: 0x%x ", value32);
field = VMX_GUEST_TR_BASE;
value32 = 0x00;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_TR_BASE: 0x%x ", value32);
field = VMX_GUEST_INTERRUPTIBILITY_INFO;
value32 = 0;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_INTERRUPTIBILITY_INFO: 0x%x ",
value32);
field = VMX_GUEST_ACTIVITY_STATE;
value32 = 0;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_ACTIVITY_STATE: 0x%x ",
value32);
field = VMX_GUEST_SMBASE;
value32 = 0;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_SMBASE: 0x%x ", value32);
asm volatile ("mov $0x174, %rcx");
asm volatile ("rdmsr");
asm volatile ("mov %%rax, %0"::"m" (value32):"memory");
field = VMX_GUEST_IA32_SYSENTER_CS;
exec_vmwrite(field, value32);
pr_dbg("VMX_GUEST_IA32_SYSENTER_CS: 0x%x ",
value32);
value64 = PAT_POWER_ON_VALUE;
exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL, value64);
pr_dbg("VMX_GUEST_IA32_PAT: 0x%016llx ",
value64);
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/* Disable long mode (clear IA32_EFER.LME) in VMCS IA32_EFER
* MSR
*/
value64 = msr_read(MSR_IA32_EFER);
value64 &= ~(MSR_IA32_EFER_LME_BIT | MSR_IA32_EFER_LMA_BIT);
} else {
value64 = msr_read(MSR_IA32_EFER);
}
exec_vmwrite64(VMX_GUEST_IA32_EFER_FULL, value64);
pr_dbg("VMX_GUEST_IA32_EFER: 0x%016llx ",
value64);
value64 = 0;
exec_vmwrite64(VMX_GUEST_IA32_DEBUGCTL_FULL, value64);
pr_dbg("VMX_GUEST_IA32_DEBUGCTL: 0x%016llx ",
value64);
/* Set up guest pending debug exception */
field = VMX_GUEST_PENDING_DEBUG_EXCEPT;
value = 0x0;
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_PENDING_DEBUG_EXCEPT: 0x%016llx ", value);
/* These fields manage host and guest system calls * pg 3069 31.10.4.2
* - set up these fields with * contents of current SYSENTER ESP and
* EIP MSR values
*/
field = VMX_GUEST_IA32_SYSENTER_ESP;
value = msr_read(MSR_IA32_SYSENTER_ESP);
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_IA32_SYSENTER_ESP: 0x%016llx ",
value);
field = VMX_GUEST_IA32_SYSENTER_EIP;
value = msr_read(MSR_IA32_SYSENTER_EIP);
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_IA32_SYSENTER_EIP: 0x%016llx ",
value);
}
static void init_host_state(__unused struct vcpu *vcpu)
{
uint64_t field;
uint16_t value16;
uint32_t value32;
uint64_t value64;
uint64_t value;
uint64_t trbase;
uint64_t trbase_lo;
uint64_t trbase_hi;
uint64_t realtrbase;
descriptor_table gdtb;
descriptor_table idtb;
uint16_t tr_sel;
pr_dbg("*********************");
pr_dbg("Initialize host state");
pr_dbg("*********************");
/***************************************************
* 16 - Bit fields
* Move the current ES, CS, SS, DS, FS, GS, TR, LDTR * values to the
* corresponding 16-bit host * segment selection (ES, CS, SS, DS, FS,
* GS), * Task Register (TR), * Local Descriptor Table Register (LDTR)
*
***************************************************/
field = VMX_HOST_ES_SEL;
asm volatile ("movw %%es, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_ES_SEL: 0x%x ", value16);
field = VMX_HOST_CS_SEL;
asm volatile ("movw %%cs, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_CS_SEL: 0x%x ", value16);
field = VMX_HOST_SS_SEL;
asm volatile ("movw %%ss, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_SS_SEL: 0x%x ", value16);
field = VMX_HOST_DS_SEL;
asm volatile ("movw %%ds, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_DS_SEL: 0x%x ", value16);
field = VMX_HOST_FS_SEL;
asm volatile ("movw %%fs, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_FS_SEL: 0x%x ", value16);
field = VMX_HOST_GS_SEL;
asm volatile ("movw %%gs, %%ax":"=a" (value16));
exec_vmwrite(field, value16);
pr_dbg("VMX_HOST_GS_SEL: 0x%x ", value16);
field = VMX_HOST_TR_SEL;
asm volatile ("str %%ax":"=a" (tr_sel));
exec_vmwrite(field, tr_sel);
pr_dbg("VMX_HOST_TR_SEL: 0x%x ", tr_sel);
/******************************************************
* 32-bit fields
* Set up the 32 bit host state fields - pg 3418 B.3.3 * Set limit for
* ES, CS, DD, DS, FS, GS, LDTR, Guest TR, * GDTR, and IDTR
******************************************************/
/* TODO: Should guest GDTB point to host GDTB ? */
/* Obtain the current global descriptor table base */
asm volatile ("sgdt %0"::"m" (gdtb));
value32 = gdtb.limit;
if ((gdtb.base >> 47) & 0x1)
gdtb.base |= 0xffff000000000000ull;
/* Set up the guest and host GDTB base fields with current GDTB base */
field = VMX_HOST_GDTR_BASE;
exec_vmwrite(field, gdtb.base);
pr_dbg("VMX_HOST_GDTR_BASE: 0x%x ", gdtb.base);
/* TODO: Should guest TR point to host TR ? */
trbase = gdtb.base + tr_sel;
if ((trbase >> 47) & 0x1)
trbase |= 0xffff000000000000ull;
/* SS segment override */
asm volatile ("mov %0,%%rax\n"
".byte 0x36\n"
"movq (%%rax),%%rax\n":"=a" (trbase_lo):"0"(trbase)
);
realtrbase = ((trbase_lo >> 16) & (0x0ffff)) |
(((trbase_lo >> 32) & 0x000000ff) << 16) |
(((trbase_lo >> 56) & 0xff) << 24);
/* SS segment override for upper32 bits of base in ia32e mode */
asm volatile ("mov %0,%%rax\n"
".byte 0x36\n"
"movq 8(%%rax),%%rax\n":"=a" (trbase_hi):"0"(trbase));
realtrbase = realtrbase | (trbase_hi << 32);
/* Set up host and guest TR base fields */
field = VMX_HOST_TR_BASE;
exec_vmwrite(field, realtrbase);
pr_dbg("VMX_HOST_TR_BASE: 0x%x ", realtrbase);
/* Obtain the current interrupt descriptor table base */
asm volatile ("sidt %0"::"m" (idtb));
/* base */
if ((idtb.base >> 47) & 0x1)
idtb.base |= 0xffff000000000000ull;
field = VMX_HOST_IDTR_BASE;
exec_vmwrite(field, idtb.base);
pr_dbg("VMX_HOST_IDTR_BASE: 0x%x ", idtb.base);
asm volatile ("mov $0x174, %rcx");
asm volatile ("rdmsr");
asm volatile ("mov %%rax, %0"::"m" (value32):"memory");
field = VMX_HOST_IA32_SYSENTER_CS;
exec_vmwrite(field, value32);
pr_dbg("VMX_HOST_IA32_SYSENTER_CS: 0x%x ",
value32);
/**************************************************/
/* 64-bit fields */
pr_dbg("64-bit********");
value64 = msr_read(MSR_IA32_PAT);
exec_vmwrite64(VMX_HOST_IA32_PAT_FULL, value64);
pr_dbg("VMX_HOST_IA32_PAT: 0x%016llx ", value64);
value64 = msr_read(MSR_IA32_EFER);
exec_vmwrite64(VMX_HOST_IA32_EFER_FULL, value64);
pr_dbg("VMX_HOST_IA32_EFER: 0x%016llx ",
value64);
/**************************************************/
/* Natural width fields */
pr_dbg("Natural-width********");
/* Set up host CR0 field */
CPU_CR_READ(cr0, &value);
value = (uint32_t) value;
field = VMX_HOST_CR0;
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_CR0: 0x%016llx ", value);
/* Set up host CR3 field */
CPU_CR_READ(cr3, &value);
value = (uint32_t) value;
field = VMX_HOST_CR3;
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_CR3: 0x%016llx ", value);
/* Set up host CR4 field */
CPU_CR_READ(cr4, &value);
value = (uint32_t) value;
field = VMX_HOST_CR4;
exec_vmwrite(field, value);
pr_dbg("VMX_GUEST_CR4: 0x%016llx ", value);
/* Set up host and guest FS base address */
value = msr_read(MSR_IA32_FS_BASE);
field = VMX_HOST_FS_BASE;
exec_vmwrite(field, value);
pr_dbg("VMX_HOST_FS_BASE: 0x%016llx ", value);
value = msr_read(MSR_IA32_GS_BASE);
field = VMX_HOST_GS_BASE;
exec_vmwrite(field, value);
pr_dbg("VMX_HOST_GS_BASE: 0x%016llx ", value);
/* Set up host instruction pointer on VM Exit */
field = VMX_HOST_RIP;
value64 = (uint64_t)&vm_exit;
pr_dbg("HOST RIP on VMExit %x ", value32);
exec_vmwrite(field, value64);
pr_dbg("vm exit return address = %x ", value32);
/* These fields manage host and guest system calls * pg 3069 31.10.4.2
* - set up these fields with * contents of current SYSENTER ESP and
* EIP MSR values
*/
field = VMX_HOST_IA32_SYSENTER_ESP;
value = msr_read(MSR_IA32_SYSENTER_ESP);
exec_vmwrite(field, value);
pr_dbg("VMX_HOST_IA32_SYSENTER_ESP: 0x%016llx ",
value);
field = VMX_HOST_IA32_SYSENTER_EIP;
value = msr_read(MSR_IA32_SYSENTER_EIP);
exec_vmwrite(field, value);
pr_dbg("VMX_HOST_IA32_SYSENTER_EIP: 0x%016llx ", value);
}
static void init_exec_ctrl(struct vcpu *vcpu)
{
uint32_t value32, fixed0, fixed1;
uint64_t value64;
struct vm *vm = (struct vm *) vcpu->vm;
/* Log messages to show initializing VMX execution controls */
pr_dbg("*****************************");
pr_dbg("Initialize execution control ");
pr_dbg("*****************************");
/* Set up VM Execution control to enable Set VM-exits on external
* interrupts preemption timer - pg 2899 24.6.1
*/
value32 = msr_read(MSR_IA32_VMX_PINBASED_CTLS);
/* enable external interrupt VM Exit */
value32 |= VMX_PINBASED_CTLS_IRQ_EXIT;
exec_vmwrite(VMX_PIN_VM_EXEC_CONTROLS, value32);
pr_dbg("VMX_PIN_VM_EXEC_CONTROLS: 0x%x ", value32);
/* Set up primary processor based VM execution controls - pg 2900
* 24.6.2. Set up for:
* Enable TSC offsetting
* Enable TSC exiting
* guest access to IO bit-mapped ports causes VM exit
* guest access to MSR causes VM exit
* Activate secondary controls
*/
/* These are bits 1,4-6,8,13-16, and 26, the corresponding bits of
* the IA32_VMX_PROCBASED_CTRLS MSR are always read as 1 --- A.3.2
*/
value32 = msr_read(MSR_IA32_VMX_PROCBASED_CTLS);
value32 |= (VMX_PROCBASED_CTLS_TSC_OFF |
/* VMX_PROCBASED_CTLS_RDTSC | */
VMX_PROCBASED_CTLS_IO_BITMAP |
VMX_PROCBASED_CTLS_MSR_BITMAP |
VMX_PROCBASED_CTLS_SECONDARY);
/*Disable VM_EXIT for CR3 access*/
value32 &= ~(VMX_PROCBASED_CTLS_CR3_LOAD |
VMX_PROCBASED_CTLS_CR3_STORE);
if (is_vapic_supported()) {
value32 |= VMX_PROCBASED_CTLS_TPR_SHADOW;
} else {
/* Add CR8 VMExit for vlapic */
value32 |=
(VMX_PROCBASED_CTLS_CR8_LOAD |
VMX_PROCBASED_CTLS_CR8_STORE);
}
exec_vmwrite(VMX_PROC_VM_EXEC_CONTROLS, value32);
pr_dbg("VMX_PROC_VM_EXEC_CONTROLS: 0x%x ", value32);
/* Set up secondary processor based VM execution controls - pg 2901
* 24.6.2. Set up for: * Enable EPT * Enable RDTSCP * Unrestricted
* guest (optional)
*/
value32 = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2);
value32 |= (VMX_PROCBASED_CTLS2_EPT |
VMX_PROCBASED_CTLS2_RDTSCP |
VMX_PROCBASED_CTLS2_UNRESTRICT);
if (is_vapic_supported()) {
value32 |= VMX_PROCBASED_CTLS2_VAPIC;
if (is_vapic_virt_reg_supported())
value32 |= VMX_PROCBASED_CTLS2_VAPIC_REGS;
if (is_vapic_intr_delivery_supported())
value32 |= VMX_PROCBASED_CTLS2_VIRQ;
else
/*
* This field exists only on processors that support
* the 1-setting of the "use TPR shadow"
* VM-execution control.
*
* Set up TPR threshold for virtual interrupt delivery
* - pg 2904 24.6.8
*/
exec_vmwrite(VMX_TPR_THRESHOLD, 0);
}
if (cpu_has_cap(X86_FEATURE_OSXSAVE)) {
exec_vmwrite64(VMX_XSS_EXITING_BITMAP_FULL, 0);
value32 |= VMX_PROCBASED_CTLS2_XSVE_XRSTR;
}
exec_vmwrite(VMX_PROC_VM_EXEC_CONTROLS2, value32);
pr_dbg("VMX_PROC_VM_EXEC_CONTROLS2: 0x%x ", value32);
if (is_vapic_supported()) {
/*APIC-v, config APIC-access address*/
value64 = apicv_get_apic_access_addr(vcpu->vm);
exec_vmwrite64(VMX_APIC_ACCESS_ADDR_FULL,
value64);
/*APIC-v, config APIC virtualized page address*/
value64 = apicv_get_apic_page_addr(vcpu->arch_vcpu.vlapic);
exec_vmwrite64(VMX_VIRTUAL_APIC_PAGE_ADDR_FULL,
value64);
if (is_vapic_intr_delivery_supported()) {
/* these fields are supported only on processors
* that support the 1-setting of the "virtual-interrupt
* delivery" VM-execution control
*/
exec_vmwrite64(VMX_EOI_EXIT0_FULL, -1UL);
exec_vmwrite64(VMX_EOI_EXIT1_FULL, -1UL);
exec_vmwrite64(VMX_EOI_EXIT2_FULL, -1UL);
exec_vmwrite64(VMX_EOI_EXIT3_FULL, -1UL);
}
}
/* Check for EPT support */
if (is_ept_supported())
pr_dbg("EPT is supported");
else
pr_err("Error: EPT is not supported");
/* Load EPTP execution control
* TODO: introduce API to make this data driven based
* on VMX_EPT_VPID_CAP
*/
value64 = vm->arch_vm.nworld_eptp | (3 << 3) | 6;
exec_vmwrite64(VMX_EPT_POINTER_FULL, value64);
pr_dbg("VMX_EPT_POINTER: 0x%016llx ", value64);
/* Set up guest exception mask bitmap setting a bit * causes a VM exit
* on corresponding guest * exception - pg 2902 24.6.3
* enable VM exit on MC and DB
*/
value32 = (1 << IDT_MC) | (1u << IDT_DB);
exec_vmwrite(VMX_EXCEPTION_BITMAP, value32);
/* Set up page fault error code mask - second paragraph * pg 2902
* 24.6.3 - guest page fault exception causing * vmexit is governed by
* both VMX_EXCEPTION_BITMAP and * VMX_PF_EC_MASK
*/
exec_vmwrite(VMX_PF_EC_MASK, 0);
/* Set up page fault error code match - second paragraph * pg 2902
* 24.6.3 - guest page fault exception causing * vmexit is governed by
* both VMX_EXCEPTION_BITMAP and * VMX_PF_EC_MATCH
*/
exec_vmwrite(VMX_PF_EC_MATCH, 0);
/* Set up CR3 target count - An execution of mov to CR3 * by guest
* causes HW to evaluate operand match with * one of N CR3-Target Value
* registers. The CR3 target * count values tells the number of
* target-value regs to evaluate
*/
exec_vmwrite(VMX_CR3_TARGET_COUNT, 0);
/* Set up IO bitmap register A and B - pg 2902 24.6.4 */
value64 = HVA2HPA(vm->arch_vm.iobitmap[0]);
exec_vmwrite64(VMX_IO_BITMAP_A_FULL, value64);
pr_dbg("VMX_IO_BITMAP_A: 0x%016llx ", value64);
value64 = HVA2HPA(vm->arch_vm.iobitmap[1]);
exec_vmwrite64(VMX_IO_BITMAP_B_FULL, value64);
pr_dbg("VMX_IO_BITMAP_B: 0x%016llx ", value64);
init_msr_emulation(vcpu);
/* Set up executive VMCS pointer - pg 2905 24.6.10 */
exec_vmwrite64(VMX_EXECUTIVE_VMCS_PTR_FULL, 0);
/* Setup Time stamp counter offset - pg 2902 24.6.5 */
exec_vmwrite64(VMX_TSC_OFFSET_FULL, 0);
/* Set up the link pointer */
exec_vmwrite64(VMX_VMS_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFF);
/* Natural-width */
pr_dbg("Natural-width*********");
/* Read the CR0 fixed0 / fixed1 MSR registers */
fixed0 = msr_read(MSR_IA32_VMX_CR0_FIXED0);
fixed1 = msr_read(MSR_IA32_VMX_CR0_FIXED1);
if (get_vcpu_mode(vcpu) == REAL_MODE) {
/* Check to see if unrestricted guest support is available */
if (msr_read(MSR_IA32_VMX_MISC) & (1 << 5)) {
/* Adjust fixed bits as they can/will reflect incorrect
* settings that ARE valid in unrestricted guest mode.
* Both PG and PE bits can bit changed in unrestricted
* guest mode.
*/
fixed0 &= ~(CR0_PG | CR0_PE);
fixed1 |= (CR0_PG | CR0_PE);
/* Log success for unrestricted mode being present */
pr_dbg("Unrestricted support is available. ");
} else {
/* Log failure for unrestricted mode NOT being
* present
*/
pr_err("Error: Unrestricted support is not available");
/* IA32_VMX_MISC bit 5 clear */
}
}
/* (get_vcpu_mode(vcpu) == REAL_MODE) */
/* Output fixed CR0 values */
pr_dbg("Fixed0 CR0 value: 0x%x", fixed0);
pr_dbg("Fixed1 CR0 value: 0x%x", fixed1);
/* Determine which bits are "flexible" in CR0 - allowed to be changed
* as per arch manual in VMX operation. Any bits that are different
* between fixed0 and fixed1 are "flexible" and the guest can change.
*/
value32 = fixed0 ^ fixed1;
/* Set the CR0 mask to the inverse of the "flexible" bits */
value32 = ~value32;
exec_vmwrite(VMX_CR0_MASK, value32);
/* Output CR0 mask value */
pr_dbg("CR0 mask value: 0x%x", value32);
/* Calculate the CR0 shadow register value that will be used to enforce
* the correct values for host owned bits
*/
value32 = (fixed0 | fixed1) & value32;
exec_vmwrite(VMX_CR0_READ_SHADOW, value32);
/* Output CR0 shadow value */
pr_dbg("CR0 shadow value: 0x%x", value32);
/* Read the CR4 fixed0 / fixed1 MSR registers */
fixed0 = msr_read(MSR_IA32_VMX_CR4_FIXED0);
fixed1 = msr_read(MSR_IA32_VMX_CR4_FIXED1);
/* Output fixed CR0 values */
pr_dbg("Fixed0 CR4 value: 0x%x", fixed0);
pr_dbg("Fixed1 CR4 value: 0x%x", fixed1);
/* Determine which bits are "flexible" in CR4 - allowed to be changed
* as per arch manual in VMX operation. Any bits that are different
* between fixed0 and fixed1 are "flexible" and the guest can change.
*/
value32 = fixed0 ^ fixed1;
/* Set the CR4 mask to the inverse of the "flexible" bits */
value32 = ~value32;
exec_vmwrite(VMX_CR4_MASK, value32);
/* Output CR4 mask value */
pr_dbg("CR4 mask value: 0x%x", value32);
/* Calculate the CR4 shadow register value that will be used to enforce
* the correct values for host owned bits
*/
value32 = (fixed0 | fixed1) & value32;
exec_vmwrite(VMX_CR4_READ_SHADOW, value32);
/* Output CR4 shadow value */
pr_dbg("CR4 shadow value: 0x%x", value32);
/* The CR3 target registers work in concert with VMX_CR3_TARGET_COUNT
* field. Using these registers guest CR3 access can be managed. i.e.,
* if operand does not match one of these register values a VM exit
* would occur
*/
exec_vmwrite(VMX_CR3_TARGET_0, 0);
exec_vmwrite(VMX_CR3_TARGET_1, 0);
exec_vmwrite(VMX_CR3_TARGET_2, 0);
exec_vmwrite(VMX_CR3_TARGET_3, 0);
}
static void init_entry_ctrl(__unused struct vcpu *vcpu)
{
uint32_t value32;
/* Log messages to show initializing VMX entry controls */
pr_dbg("*************************");
pr_dbg("Initialize Entry control ");
pr_dbg("*************************");
/* Set up VMX entry controls - pg 2908 24.8.1 * Set IA32e guest mode -
* on VM entry processor is in IA32e 64 bitmode * Start guest with host
* IA32_PAT and IA32_EFER
*/
value32 = msr_read(MSR_IA32_VMX_ENTRY_CTLS);
if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE)
value32 |= (VMX_ENTRY_CTLS_IA32E_MODE);
value32 |= (VMX_ENTRY_CTLS_LOAD_EFER |
VMX_ENTRY_CTLS_LOAD_PAT);
exec_vmwrite(VMX_ENTRY_CONTROLS, value32);
pr_dbg("VMX_ENTRY_CONTROLS: 0x%x ", value32);
/* Set up VMX entry MSR load count - pg 2908 24.8.2 Tells the number of
* MSRs on load from memory on VM entry from mem address provided by
* VM-entry MSR load address field
*/
exec_vmwrite(VMX_ENTRY_MSR_LOAD_COUNT, 0);
/* Set up VM entry interrupt information field pg 2909 24.8.3 */
exec_vmwrite(VMX_ENTRY_INT_INFO_FIELD, 0);
/* Set up VM entry exception error code - pg 2910 24.8.3 */
exec_vmwrite(VMX_ENTRY_EXCEPTION_EC, 0);
/* Set up VM entry instruction length - pg 2910 24.8.3 */
exec_vmwrite(VMX_ENTRY_INSTR_LENGTH, 0);
}
static void init_exit_ctrl(__unused struct vcpu *vcpu)
{
uint32_t value32;
/* Log messages to show initializing VMX entry controls */
pr_dbg("************************");
pr_dbg("Initialize Exit control ");
pr_dbg("************************");
/* Set up VM exit controls - pg 2907 24.7.1 for: Host address space
* size is 64 bit Set up to acknowledge interrupt on exit, if 1 the HW
* acks the interrupt in VMX non-root and saves the interrupt vector to
* the relevant VM exit field for further processing by Hypervisor
* Enable saving and loading of IA32_PAT and IA32_EFER on VMEXIT Enable
* saving of pre-emption timer on VMEXIT
*/
value32 = msr_read(MSR_IA32_VMX_EXIT_CTLS);
value32 |= (VMX_EXIT_CTLS_ACK_IRQ |
VMX_EXIT_CTLS_SAVE_PAT |
VMX_EXIT_CTLS_LOAD_PAT |
VMX_EXIT_CTLS_LOAD_EFER |
VMX_EXIT_CTLS_SAVE_EFER |
VMX_EXIT_CTLS_HOST_ADDR64);
exec_vmwrite(VMX_EXIT_CONTROLS, value32);
pr_dbg("VMX_EXIT_CONTROL: 0x%x ", value32);
/* Set up VM exit MSR store and load counts pg 2908 24.7.2 - tells the
* HW number of MSRs to stored to mem and loaded from mem on VM exit.
* The 64 bit VM-exit MSR store and load address fields provide the
* corresponding addresses
*/
exec_vmwrite(VMX_EXIT_MSR_STORE_COUNT, 0);
exec_vmwrite(VMX_EXIT_MSR_LOAD_COUNT, 0);
}
#ifdef CONFIG_EFI_STUB
static void override_uefi_vmcs(struct vcpu *vcpu)
{
uint64_t field;
struct run_context *cur_context =
&vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context];
if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) {
/* Set up guest CR0 field */
field = VMX_GUEST_CR0;
cur_context->cr0 = efi_ctx->cr0 | CR0_PG | CR0_PE | CR0_NE;
exec_vmwrite(field, cur_context->cr0 & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR0: 0x%016llx ", cur_context->cr0);
/* Set up guest CR3 field */
field = VMX_GUEST_CR3;
cur_context->cr3 = efi_ctx->cr3;
exec_vmwrite(field, cur_context->cr3 & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR3: 0x%016llx ", cur_context->cr3);
/* Set up guest CR4 field */
field = VMX_GUEST_CR4;
cur_context->cr4 = efi_ctx->cr4 | CR4_VMXE;
exec_vmwrite(field, cur_context->cr4 & 0xFFFFFFFF);
pr_dbg("VMX_GUEST_CR4: 0x%016llx ", cur_context->cr4);
/* Selector */
field = VMX_GUEST_CS_SEL;
exec_vmwrite(field, efi_ctx->cs_sel);
pr_dbg("VMX_GUEST_CS_SEL: 0x%x ", efi_ctx->cs_sel);
/* Access */
field = VMX_GUEST_CS_ATTR;
exec_vmwrite(field, efi_ctx->cs_ar);
pr_dbg("VMX_GUEST_CS_ATTR: 0x%x ", efi_ctx->cs_ar);
field = VMX_GUEST_ES_SEL;
exec_vmwrite(field, efi_ctx->es_sel);
pr_dbg("VMX_GUEST_ES_SEL: 0x%x ", efi_ctx->es_sel);
field = VMX_GUEST_SS_SEL;
exec_vmwrite(field, efi_ctx->ss_sel);
pr_dbg("VMX_GUEST_SS_SEL: 0x%x ", efi_ctx->ss_sel);
field = VMX_GUEST_DS_SEL;
exec_vmwrite(field, efi_ctx->ds_sel);
pr_dbg("VMX_GUEST_DS_SEL: 0x%x ", efi_ctx->ds_sel);
field = VMX_GUEST_FS_SEL;
exec_vmwrite(field, efi_ctx->fs_sel);
pr_dbg("VMX_GUEST_FS_SEL: 0x%x ", efi_ctx->fs_sel);
field = VMX_GUEST_GS_SEL;
exec_vmwrite(field, efi_ctx->gs_sel);
pr_dbg("VMX_GUEST_GS_SEL: 0x%x ", efi_ctx->gs_sel);
/* Base */
field = VMX_GUEST_ES_BASE;
exec_vmwrite(field, efi_ctx->es_sel << 4);
field = VMX_GUEST_SS_BASE;
exec_vmwrite(field, efi_ctx->ss_sel << 4);
field = VMX_GUEST_DS_BASE;
exec_vmwrite(field, efi_ctx->ds_sel << 4);
field = VMX_GUEST_FS_BASE;
exec_vmwrite(field, efi_ctx->fs_sel << 4);
field = VMX_GUEST_GS_BASE;
exec_vmwrite(field, efi_ctx->gs_sel << 4);
/* RSP */
field = VMX_GUEST_RSP;
exec_vmwrite(field, efi_ctx->rsp);
pr_dbg("GUEST RSP on VMEntry %x ", efi_ctx->rsp);
/* GDTR Base */
field = VMX_GUEST_GDTR_BASE;
exec_vmwrite(field, (uint64_t)efi_ctx->gdt.base);
pr_dbg("VMX_GUEST_GDTR_BASE: 0x%x ", efi_ctx->gdt.base);
/* GDTR Limit */
field = VMX_GUEST_GDTR_LIMIT;
exec_vmwrite(field, efi_ctx->gdt.limit);
pr_dbg("VMX_GUEST_GDTR_LIMIT: 0x%x ", efi_ctx->gdt.limit);
/* IDTR Base */
field = VMX_GUEST_IDTR_BASE;
exec_vmwrite(field, (uint64_t)efi_ctx->idt.base);
pr_dbg("VMX_GUEST_IDTR_BASE: 0x%x ", efi_ctx->idt.base);
/* IDTR Limit */
field = VMX_GUEST_IDTR_LIMIT;
exec_vmwrite(field, efi_ctx->idt.limit);
pr_dbg("VMX_GUEST_IDTR_LIMIT: 0x%x ", efi_ctx->idt.limit);
}
/* Interrupt */
field = VMX_GUEST_RFLAGS;
/* clear flags for CF/PF/AF/ZF/SF/OF */
cur_context->rflags = efi_ctx->rflags & ~(0x8d5);
exec_vmwrite(field, cur_context->rflags);
pr_dbg("VMX_GUEST_RFLAGS: 0x%016llx ", cur_context->rflags);
}
#endif
int init_vmcs(struct vcpu *vcpu)
{
uint32_t vmx_rev_id;
int status = 0;
uint64_t vmcs_pa;
if (vcpu == NULL)
status = -EINVAL;
ASSERT(status == 0, "Incorrect arguments");
/* Log message */
pr_dbg("Initializing VMCS");
/* Obtain the VM Rev ID from HW and populate VMCS page with it */
vmx_rev_id = msr_read(MSR_IA32_VMX_BASIC);
memcpy_s((void *) vcpu->arch_vcpu.vmcs, 4, &vmx_rev_id, 4);
/* Execute VMCLEAR on current VMCS */
vmcs_pa = HVA2HPA(vcpu->arch_vcpu.vmcs);
status = exec_vmclear((void *)&vmcs_pa);
ASSERT(status == 0, "Failed VMCLEAR during VMCS setup!");
/* Load VMCS pointer */
status = exec_vmptrld((void *)&vmcs_pa);
ASSERT(status == 0, "Failed VMCS pointer load!");
/* Initialize the Virtual Machine Control Structure (VMCS) */
init_host_state(vcpu);
init_guest_state(vcpu);
init_exec_ctrl(vcpu);
init_entry_ctrl(vcpu);
init_exit_ctrl(vcpu);
#ifdef CONFIG_EFI_STUB
if (is_vm0(vcpu->vm) && vcpu->pcpu_id == 0)
override_uefi_vmcs(vcpu);
#endif
/* Return status to caller */
return status;
}