/* * Copyright (C) 2018 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #ifdef CONFIG_EFI_STUB #include extern struct efi_ctx* efi_ctx; #endif #define PAT_POWER_ON_VALUE (PAT_MEM_TYPE_WB + \ ((uint64_t)PAT_MEM_TYPE_WT << 8) + \ ((uint64_t)PAT_MEM_TYPE_WC << 16) + \ ((uint64_t)PAT_MEM_TYPE_UC << 24) + \ ((uint64_t)PAT_MEM_TYPE_WB << 32) + \ ((uint64_t)PAT_MEM_TYPE_WT << 40) + \ ((uint64_t)PAT_MEM_TYPE_UCM << 48) + \ ((uint64_t)PAT_MEM_TYPE_UC << 56)) static inline int exec_vmxon(void *addr) { uint64_t rflags; uint64_t tmp64; int status = 0; if (addr == NULL) status = -EINVAL; ASSERT(status == 0, "Incorrect arguments"); /* Read Feature ControL MSR */ tmp64 = msr_read(MSR_IA32_FEATURE_CONTROL); /* Determine if feature control is locked */ if (tmp64 & MSR_IA32_FEATURE_CONTROL_LOCK) { /* See if VMX enabled */ if (!(tmp64 & MSR_IA32_FEATURE_CONTROL_VMX_NO_SMX)) { /* Return error - VMX can't be enabled */ status = -EINVAL; } } else { /* Lock and enable VMX support */ tmp64 |= (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMX_NO_SMX); msr_write(MSR_IA32_FEATURE_CONTROL, tmp64); } /* Ensure previous operations successful */ if (status == 0) { /* Turn VMX on */ asm volatile ("mov %1, %%rax\n" "vmxon (%%rax)\n" "pushfq\n" "pop %0\n":"=r" (rflags) : "r"(addr) : "%rax", "cc", "memory"); /* if carry and zero flags are clear operation success */ if (rflags & (RFLAGS_C | RFLAGS_Z)) status = -EINVAL; } /* Return result to caller */ return status; } int exec_vmxon_instr(void) { uint64_t tmp64; uint32_t tmp32; int ret_val = -EINVAL; void *vmxon_region_va; uint64_t vmxon_region_pa; /* Allocate page aligned memory for VMXON region */ vmxon_region_va = alloc_page(); if (vmxon_region_va != 0) { /* Initialize vmxon page with revision id from IA32 VMX BASIC * MSR */ tmp32 = msr_read(MSR_IA32_VMX_BASIC); memcpy_s((uint32_t *) vmxon_region_va, 4, &tmp32, 4); /* Turn on CR0.NE and CR4.VMXE */ CPU_CR_READ(cr0, &tmp64); CPU_CR_WRITE(cr0, tmp64 | CR0_NE); CPU_CR_READ(cr4, &tmp64); CPU_CR_WRITE(cr4, tmp64 | CR4_VMXE); /* Turn ON VMX */ vmxon_region_pa = HVA2HPA(vmxon_region_va); ret_val = exec_vmxon(&vmxon_region_pa); } return ret_val; } int exec_vmclear(void *addr) { uint64_t rflags; int status = 0; if (addr == NULL) status = -EINVAL; ASSERT(status == 0, "Incorrect arguments"); asm volatile ( "mov %1, %%rax\n" "vmclear (%%rax)\n" "pushfq\n" "pop %0\n":"=r" (rflags) : "r"(addr) : "%rax", "cc", "memory"); /* if carry and zero flags are clear operation success */ if (rflags & (RFLAGS_C | RFLAGS_Z)) status = -EINVAL; return status; } int exec_vmptrld(void *addr) { uint64_t rflags; int status = 0; if (addr == NULL) status = -EINVAL; ASSERT(status == 0, "Incorrect arguments"); asm volatile ( "mov %1, %%rax\n" "vmptrld (%%rax)\n" "pushfq\n" "pop %0\n" : "=r" (rflags) : "r"(addr) : "%rax", "cc"); /* if carry and zero flags are clear operation success */ if (rflags & (RFLAGS_C | RFLAGS_Z)) status = -EINVAL; return status; } uint64_t exec_vmread(uint32_t field) { uint64_t value; asm volatile ( "vmread %%rdx, %%rax " : "=a" (value) : "d"(field) : "cc"); return value; } uint64_t exec_vmread64(uint32_t field_full) { uint64_t low; low = exec_vmread(field_full); #ifdef __i386__ low += exec_vmread(field_full + 1) << 32; #endif return low; } void exec_vmwrite(uint32_t field, uint64_t value) { asm volatile ( "vmwrite %%rax, %%rdx " : : "a" (value), "d"(field) : "cc"); } void exec_vmwrite64(unsigned int field_full, uint64_t value) { #ifdef __i386__ int low = (int)(value & 0xFFFFFFFF); int high = (int)((value >> 32) & 0xFFFFFFFF); exec_vmwrite(field_full, low); exec_vmwrite(field_full + 1, high); #else exec_vmwrite(field_full, value); #endif } #define HV_ARCH_VMX_GET_CS(SEL) \ { \ asm volatile ("movw %%cs, %%ax" : "=a"(sel)); \ } uint32_t get_cs_access_rights(void) { uint32_t usable_ar; uint16_t sel_value; asm volatile ("movw %%cs, %%ax" : "=a" (sel_value)); asm volatile ("lar %%eax, %%eax" : "=a" (usable_ar) : "a"(sel_value)); usable_ar = usable_ar >> 8; usable_ar &= 0xf0ff; /* clear bits 11:8 */ return usable_ar; } static void init_guest_state(struct vcpu *vcpu) { uint64_t field; uint64_t value; uint32_t value32; uint64_t value64; uint16_t sel; uint32_t limit, access, base; uint32_t ldt_idx = 0x38; int es = 0, ss = 0, ds = 0, fs = 0, gs = 0, data32_idx; uint32_t lssd32_idx = 0x70; struct vm *vm = vcpu->vm; struct run_context *cur_context = &vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context]; pr_dbg("*********************"); pr_dbg("Initialize guest state"); pr_dbg("*********************"); /*************************************************/ /* Set up CRx */ /*************************************************/ pr_dbg("Natural-width********"); /* Setup guest control register values */ /* Set up guest CRO field */ if (get_vcpu_mode(vcpu) == REAL_MODE) { /*cur_context->cr0 = (CR0_CD | CR0_NW | CR0_ET | CR0_NE);*/ cur_context->cr0 = CR0_ET | CR0_NE; cur_context->cr3 = 0; cur_context->cr4 = CR4_VMXE; } else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { cur_context->cr0 = ((uint64_t)CR0_PG | CR0_PE | CR0_NE); cur_context->cr4 = ((uint64_t)CR4_PSE | CR4_PAE | CR4_MCE | CR4_VMXE); cur_context->cr3 = vm->arch_vm.guest_init_pml4 | CR3_PWT; } value = cur_context->cr0; field = VMX_GUEST_CR0; exec_vmwrite(field, value & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR0: 0x%016llx ", value); /* Set up guest CR3 field */ value = cur_context->cr3; field = VMX_GUEST_CR3; exec_vmwrite(field, value & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR3: 0x%016llx ", value); /* Set up guest CR4 field */ value = cur_context->cr4; field = VMX_GUEST_CR4; exec_vmwrite(field, value & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR4: 0x%016llx ", value); /***************************************************/ /* Set up Flags - the value of RFLAGS on VM entry */ /***************************************************/ field = VMX_GUEST_RFLAGS; cur_context->rflags = 0x2; /* Bit 1 is a active high reserved bit */ exec_vmwrite(field, cur_context->rflags); pr_dbg("VMX_GUEST_RFLAGS: 0x%016llx ", value); /***************************************************/ /* Set Code Segment - CS */ /***************************************************/ if (get_vcpu_mode(vcpu) == REAL_MODE) { /* AP is initialized with real mode * and CS value is left shift 8 bits from sipi vector; */ sel = vcpu->arch_vcpu.sipi_vector << 8; limit = 0xffff; access = 0x9F; base = sel << 4; } else { HV_ARCH_VMX_GET_CS(sel); access = get_cs_access_rights(); limit = 0xffffffff; base = 0; } /* Selector */ field = VMX_GUEST_CS_SEL; exec_vmwrite(field, sel); pr_dbg("VMX_GUEST_CS_SEL: 0x%x ", sel); /* Limit */ field = VMX_GUEST_CS_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_CS_LIMIT: 0x%x ", limit); /* Access */ field = VMX_GUEST_CS_ATTR; exec_vmwrite(field, access); pr_dbg("VMX_GUEST_CS_ATTR: 0x%x ", access); /* Base */ field = VMX_GUEST_CS_BASE; exec_vmwrite(field, base); pr_dbg("VMX_GUEST_CS_BASE: 0x%016llx ", base); /***************************************************/ /* Set up instruction pointer and stack pointer */ /***************************************************/ /* Set up guest instruction pointer */ field = VMX_GUEST_RIP; if (get_vcpu_mode(vcpu) == REAL_MODE) value32 = 0; else value32 = (uint32_t) ((uint64_t) vcpu->entry_addr & 0xFFFFFFFF); pr_dbg("GUEST RIP on VMEntry %x ", value32); exec_vmwrite(field, value32); if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { /* Set up guest stack pointer to 0 */ field = VMX_GUEST_RSP; value32 = 0; pr_dbg("GUEST RSP on VMEntry %x ", value32); exec_vmwrite(field, value32); } /***************************************************/ /* Set up GDTR, IDTR and LDTR */ /***************************************************/ /* GDTR - Global Descriptor Table */ if (get_vcpu_mode(vcpu) == REAL_MODE) { /* Base */ base = 0; /* Limit */ limit = 0xFFFF; } else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { descriptor_table gdtb; /* Base *//* TODO: Should guest GDTB point to host GDTB ? */ /* Obtain the current global descriptor table base */ asm volatile ("sgdt %0" : : "m" (gdtb)); value32 = gdtb.limit; if ((gdtb.base >> 47) & 0x1) gdtb.base |= 0xffff000000000000ull; base = gdtb.base; /* Limit */ limit = HOST_GDT_SIZE - 1; } /* GDTR Base */ field = VMX_GUEST_GDTR_BASE; exec_vmwrite(field, base); pr_dbg("VMX_GUEST_GDTR_BASE: 0x%x ", base); /* GDTR Limit */ field = VMX_GUEST_GDTR_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_GDTR_LIMIT: 0x%x ", limit); /* IDTR - Interrupt Descriptor Table */ if (get_vcpu_mode(vcpu) == REAL_MODE) { /* Base */ base = 0; /* Limit */ limit = 0xFFFF; } else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { descriptor_table idtb ; /* TODO: Should guest IDTR point to host IDTR ? */ asm volatile ("sidt %0"::"m" (idtb)); /* Limit */ limit = idtb.limit; if ((idtb.base >> 47) & 0x1) idtb.base |= 0xffff000000000000ull; /* Base */ base = idtb.base; } /* IDTR Base */ field = VMX_GUEST_IDTR_BASE; exec_vmwrite(field, base); pr_dbg("VMX_GUEST_IDTR_BASE: 0x%x ", base); /* IDTR Limit */ field = VMX_GUEST_IDTR_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_IDTR_LIMIT: 0x%x ", limit); /***************************************************/ /* Debug register */ /***************************************************/ /* Set up guest Debug register */ field = VMX_GUEST_DR7; value = 0x400; exec_vmwrite(field, value); pr_dbg("VMX_GUEST_DR7: 0x%016llx ", value); /***************************************************/ /* ES, CS, SS, DS, FS, GS */ /***************************************************/ data32_idx = 0x10; if (get_vcpu_mode(vcpu) == REAL_MODE) { es = ss = ds = fs = gs = data32_idx; limit = 0xffff; } else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { asm volatile ("movw %%es, %%ax":"=a" (es)); asm volatile ("movw %%ss, %%ax":"=a" (ss)); asm volatile ("movw %%ds, %%ax":"=a" (ds)); asm volatile ("movw %%fs, %%ax":"=a" (fs)); asm volatile ("movw %%gs, %%ax":"=a" (gs)); limit = 0xffffffff; } /* Selector */ field = VMX_GUEST_ES_SEL; exec_vmwrite(field, es); pr_dbg("VMX_GUEST_ES_SEL: 0x%x ", es); field = VMX_GUEST_SS_SEL; exec_vmwrite(field, ss); pr_dbg("VMX_GUEST_SS_SEL: 0x%x ", ss); field = VMX_GUEST_DS_SEL; exec_vmwrite(field, ds); pr_dbg("VMX_GUEST_DS_SEL: 0x%x ", ds); field = VMX_GUEST_FS_SEL; exec_vmwrite(field, fs); pr_dbg("VMX_GUEST_FS_SEL: 0x%x ", fs); field = VMX_GUEST_GS_SEL; exec_vmwrite(field, gs); pr_dbg("VMX_GUEST_GS_SEL: 0x%x ", gs); /* Limit */ field = VMX_GUEST_ES_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_ES_LIMIT: 0x%x ", limit); field = VMX_GUEST_SS_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_SS_LIMIT: 0x%x ", limit); field = VMX_GUEST_DS_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_DS_LIMIT: 0x%x ", limit); field = VMX_GUEST_FS_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_FS_LIMIT: 0x%x ", limit); field = VMX_GUEST_GS_LIMIT; exec_vmwrite(field, limit); pr_dbg("VMX_GUEST_GS_LIMIT: 0x%x ", limit); /* Access */ if (get_vcpu_mode(vcpu) == REAL_MODE) value32 = 0x0093; else if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) value32 = 0xc093; field = VMX_GUEST_ES_ATTR; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_ES_ATTR: 0x%x ", value32); field = VMX_GUEST_SS_ATTR; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_SS_ATTR: 0x%x ", value32); field = VMX_GUEST_DS_ATTR; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_DS_ATTR: 0x%x ", value32); field = VMX_GUEST_FS_ATTR; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_FS_ATTR: 0x%x ", value32); field = VMX_GUEST_GS_ATTR; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_GS_ATTR: 0x%x ", value32); /* Base */ value = 0; field = VMX_GUEST_ES_BASE; exec_vmwrite(field, es << 4); pr_dbg("VMX_GUEST_ES_BASE: 0x%016llx ", value); field = VMX_GUEST_SS_BASE; exec_vmwrite(field, ss << 4); pr_dbg("VMX_GUEST_SS_BASE: 0x%016llx ", value); field = VMX_GUEST_DS_BASE; exec_vmwrite(field, ds << 4); pr_dbg("VMX_GUEST_DS_BASE: 0x%016llx ", value); field = VMX_GUEST_FS_BASE; exec_vmwrite(field, fs << 4); pr_dbg("VMX_GUEST_FS_BASE: 0x%016llx ", value); field = VMX_GUEST_GS_BASE; exec_vmwrite(field, gs << 4); pr_dbg("VMX_GUEST_GS_BASE: 0x%016llx ", value); /***************************************************/ /* LDT and TR (dummy) */ /***************************************************/ field = VMX_GUEST_LDTR_SEL; value32 = ldt_idx; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_LDTR_SEL: 0x%x ", value32); field = VMX_GUEST_LDTR_LIMIT; value32 = 0xffffffff; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_LDTR_LIMIT: 0x%x ", value32); field = VMX_GUEST_LDTR_ATTR; value32 = 0x10000; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_LDTR_ATTR: 0x%x ", value32); field = VMX_GUEST_LDTR_BASE; value32 = 0x00; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_LDTR_BASE: 0x%x ", value32); /* Task Register */ field = VMX_GUEST_TR_SEL; value32 = lssd32_idx; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_TR_SEL: 0x%x ", value32); field = VMX_GUEST_TR_LIMIT; value32 = 0xff; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_TR_LIMIT: 0x%x ", value32); field = VMX_GUEST_TR_ATTR; value32 = 0x8b; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_TR_ATTR: 0x%x ", value32); field = VMX_GUEST_TR_BASE; value32 = 0x00; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_TR_BASE: 0x%x ", value32); field = VMX_GUEST_INTERRUPTIBILITY_INFO; value32 = 0; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_INTERRUPTIBILITY_INFO: 0x%x ", value32); field = VMX_GUEST_ACTIVITY_STATE; value32 = 0; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_ACTIVITY_STATE: 0x%x ", value32); field = VMX_GUEST_SMBASE; value32 = 0; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_SMBASE: 0x%x ", value32); asm volatile ("mov $0x174, %rcx"); asm volatile ("rdmsr"); asm volatile ("mov %%rax, %0"::"m" (value32):"memory"); field = VMX_GUEST_IA32_SYSENTER_CS; exec_vmwrite(field, value32); pr_dbg("VMX_GUEST_IA32_SYSENTER_CS: 0x%x ", value32); value64 = PAT_POWER_ON_VALUE; exec_vmwrite64(VMX_GUEST_IA32_PAT_FULL, value64); pr_dbg("VMX_GUEST_IA32_PAT: 0x%016llx ", value64); if (get_vcpu_mode(vcpu) == REAL_MODE) { /* Disable long mode (clear IA32_EFER.LME) in VMCS IA32_EFER * MSR */ value64 = msr_read(MSR_IA32_EFER); value64 &= ~(MSR_IA32_EFER_LME_BIT | MSR_IA32_EFER_LMA_BIT); } else { value64 = msr_read(MSR_IA32_EFER); } exec_vmwrite64(VMX_GUEST_IA32_EFER_FULL, value64); pr_dbg("VMX_GUEST_IA32_EFER: 0x%016llx ", value64); value64 = 0; exec_vmwrite64(VMX_GUEST_IA32_DEBUGCTL_FULL, value64); pr_dbg("VMX_GUEST_IA32_DEBUGCTL: 0x%016llx ", value64); /* Set up guest pending debug exception */ field = VMX_GUEST_PENDING_DEBUG_EXCEPT; value = 0x0; exec_vmwrite(field, value); pr_dbg("VMX_GUEST_PENDING_DEBUG_EXCEPT: 0x%016llx ", value); /* These fields manage host and guest system calls * pg 3069 31.10.4.2 * - set up these fields with * contents of current SYSENTER ESP and * EIP MSR values */ field = VMX_GUEST_IA32_SYSENTER_ESP; value = msr_read(MSR_IA32_SYSENTER_ESP); exec_vmwrite(field, value); pr_dbg("VMX_GUEST_IA32_SYSENTER_ESP: 0x%016llx ", value); field = VMX_GUEST_IA32_SYSENTER_EIP; value = msr_read(MSR_IA32_SYSENTER_EIP); exec_vmwrite(field, value); pr_dbg("VMX_GUEST_IA32_SYSENTER_EIP: 0x%016llx ", value); } static void init_host_state(__unused struct vcpu *vcpu) { uint64_t field; uint16_t value16; uint32_t value32; uint64_t value64; uint64_t value; uint64_t trbase; uint64_t trbase_lo; uint64_t trbase_hi; uint64_t realtrbase; descriptor_table gdtb; descriptor_table idtb; uint16_t tr_sel; pr_dbg("*********************"); pr_dbg("Initialize host state"); pr_dbg("*********************"); /*************************************************** * 16 - Bit fields * Move the current ES, CS, SS, DS, FS, GS, TR, LDTR * values to the * corresponding 16-bit host * segment selection (ES, CS, SS, DS, FS, * GS), * Task Register (TR), * Local Descriptor Table Register (LDTR) * ***************************************************/ field = VMX_HOST_ES_SEL; asm volatile ("movw %%es, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_ES_SEL: 0x%x ", value16); field = VMX_HOST_CS_SEL; asm volatile ("movw %%cs, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_CS_SEL: 0x%x ", value16); field = VMX_HOST_SS_SEL; asm volatile ("movw %%ss, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_SS_SEL: 0x%x ", value16); field = VMX_HOST_DS_SEL; asm volatile ("movw %%ds, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_DS_SEL: 0x%x ", value16); field = VMX_HOST_FS_SEL; asm volatile ("movw %%fs, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_FS_SEL: 0x%x ", value16); field = VMX_HOST_GS_SEL; asm volatile ("movw %%gs, %%ax":"=a" (value16)); exec_vmwrite(field, value16); pr_dbg("VMX_HOST_GS_SEL: 0x%x ", value16); field = VMX_HOST_TR_SEL; asm volatile ("str %%ax":"=a" (tr_sel)); exec_vmwrite(field, tr_sel); pr_dbg("VMX_HOST_TR_SEL: 0x%x ", tr_sel); /****************************************************** * 32-bit fields * Set up the 32 bit host state fields - pg 3418 B.3.3 * Set limit for * ES, CS, DD, DS, FS, GS, LDTR, Guest TR, * GDTR, and IDTR ******************************************************/ /* TODO: Should guest GDTB point to host GDTB ? */ /* Obtain the current global descriptor table base */ asm volatile ("sgdt %0"::"m" (gdtb)); value32 = gdtb.limit; if ((gdtb.base >> 47) & 0x1) gdtb.base |= 0xffff000000000000ull; /* Set up the guest and host GDTB base fields with current GDTB base */ field = VMX_HOST_GDTR_BASE; exec_vmwrite(field, gdtb.base); pr_dbg("VMX_HOST_GDTR_BASE: 0x%x ", gdtb.base); /* TODO: Should guest TR point to host TR ? */ trbase = gdtb.base + tr_sel; if ((trbase >> 47) & 0x1) trbase |= 0xffff000000000000ull; /* SS segment override */ asm volatile ("mov %0,%%rax\n" ".byte 0x36\n" "movq (%%rax),%%rax\n":"=a" (trbase_lo):"0"(trbase) ); realtrbase = ((trbase_lo >> 16) & (0x0ffff)) | (((trbase_lo >> 32) & 0x000000ff) << 16) | (((trbase_lo >> 56) & 0xff) << 24); /* SS segment override for upper32 bits of base in ia32e mode */ asm volatile ("mov %0,%%rax\n" ".byte 0x36\n" "movq 8(%%rax),%%rax\n":"=a" (trbase_hi):"0"(trbase)); realtrbase = realtrbase | (trbase_hi << 32); /* Set up host and guest TR base fields */ field = VMX_HOST_TR_BASE; exec_vmwrite(field, realtrbase); pr_dbg("VMX_HOST_TR_BASE: 0x%x ", realtrbase); /* Obtain the current interrupt descriptor table base */ asm volatile ("sidt %0"::"m" (idtb)); /* base */ if ((idtb.base >> 47) & 0x1) idtb.base |= 0xffff000000000000ull; field = VMX_HOST_IDTR_BASE; exec_vmwrite(field, idtb.base); pr_dbg("VMX_HOST_IDTR_BASE: 0x%x ", idtb.base); asm volatile ("mov $0x174, %rcx"); asm volatile ("rdmsr"); asm volatile ("mov %%rax, %0"::"m" (value32):"memory"); field = VMX_HOST_IA32_SYSENTER_CS; exec_vmwrite(field, value32); pr_dbg("VMX_HOST_IA32_SYSENTER_CS: 0x%x ", value32); /**************************************************/ /* 64-bit fields */ pr_dbg("64-bit********"); value64 = msr_read(MSR_IA32_PAT); exec_vmwrite64(VMX_HOST_IA32_PAT_FULL, value64); pr_dbg("VMX_HOST_IA32_PAT: 0x%016llx ", value64); value64 = msr_read(MSR_IA32_EFER); exec_vmwrite64(VMX_HOST_IA32_EFER_FULL, value64); pr_dbg("VMX_HOST_IA32_EFER: 0x%016llx ", value64); /**************************************************/ /* Natural width fields */ pr_dbg("Natural-width********"); /* Set up host CR0 field */ CPU_CR_READ(cr0, &value); value = (uint32_t) value; field = VMX_HOST_CR0; exec_vmwrite(field, value); pr_dbg("VMX_GUEST_CR0: 0x%016llx ", value); /* Set up host CR3 field */ CPU_CR_READ(cr3, &value); value = (uint32_t) value; field = VMX_HOST_CR3; exec_vmwrite(field, value); pr_dbg("VMX_GUEST_CR3: 0x%016llx ", value); /* Set up host CR4 field */ CPU_CR_READ(cr4, &value); value = (uint32_t) value; field = VMX_HOST_CR4; exec_vmwrite(field, value); pr_dbg("VMX_GUEST_CR4: 0x%016llx ", value); /* Set up host and guest FS base address */ value = msr_read(MSR_IA32_FS_BASE); field = VMX_HOST_FS_BASE; exec_vmwrite(field, value); pr_dbg("VMX_HOST_FS_BASE: 0x%016llx ", value); value = msr_read(MSR_IA32_GS_BASE); field = VMX_HOST_GS_BASE; exec_vmwrite(field, value); pr_dbg("VMX_HOST_GS_BASE: 0x%016llx ", value); /* Set up host instruction pointer on VM Exit */ field = VMX_HOST_RIP; value64 = (uint64_t)&vm_exit; pr_dbg("HOST RIP on VMExit %x ", value32); exec_vmwrite(field, value64); pr_dbg("vm exit return address = %x ", value32); /* These fields manage host and guest system calls * pg 3069 31.10.4.2 * - set up these fields with * contents of current SYSENTER ESP and * EIP MSR values */ field = VMX_HOST_IA32_SYSENTER_ESP; value = msr_read(MSR_IA32_SYSENTER_ESP); exec_vmwrite(field, value); pr_dbg("VMX_HOST_IA32_SYSENTER_ESP: 0x%016llx ", value); field = VMX_HOST_IA32_SYSENTER_EIP; value = msr_read(MSR_IA32_SYSENTER_EIP); exec_vmwrite(field, value); pr_dbg("VMX_HOST_IA32_SYSENTER_EIP: 0x%016llx ", value); } static void init_exec_ctrl(struct vcpu *vcpu) { uint32_t value32, fixed0, fixed1; uint64_t value64; struct vm *vm = (struct vm *) vcpu->vm; /* Log messages to show initializing VMX execution controls */ pr_dbg("*****************************"); pr_dbg("Initialize execution control "); pr_dbg("*****************************"); /* Set up VM Execution control to enable Set VM-exits on external * interrupts preemption timer - pg 2899 24.6.1 */ value32 = msr_read(MSR_IA32_VMX_PINBASED_CTLS); /* enable external interrupt VM Exit */ value32 |= VMX_PINBASED_CTLS_IRQ_EXIT; exec_vmwrite(VMX_PIN_VM_EXEC_CONTROLS, value32); pr_dbg("VMX_PIN_VM_EXEC_CONTROLS: 0x%x ", value32); /* Set up primary processor based VM execution controls - pg 2900 * 24.6.2. Set up for: * Enable TSC offsetting * Enable TSC exiting * guest access to IO bit-mapped ports causes VM exit * guest access to MSR causes VM exit * Activate secondary controls */ /* These are bits 1,4-6,8,13-16, and 26, the corresponding bits of * the IA32_VMX_PROCBASED_CTRLS MSR are always read as 1 --- A.3.2 */ value32 = msr_read(MSR_IA32_VMX_PROCBASED_CTLS); value32 |= (VMX_PROCBASED_CTLS_TSC_OFF | /* VMX_PROCBASED_CTLS_RDTSC | */ VMX_PROCBASED_CTLS_IO_BITMAP | VMX_PROCBASED_CTLS_MSR_BITMAP | VMX_PROCBASED_CTLS_SECONDARY); /*Disable VM_EXIT for CR3 access*/ value32 &= ~(VMX_PROCBASED_CTLS_CR3_LOAD | VMX_PROCBASED_CTLS_CR3_STORE); if (is_vapic_supported()) { value32 |= VMX_PROCBASED_CTLS_TPR_SHADOW; } else { /* Add CR8 VMExit for vlapic */ value32 |= (VMX_PROCBASED_CTLS_CR8_LOAD | VMX_PROCBASED_CTLS_CR8_STORE); } exec_vmwrite(VMX_PROC_VM_EXEC_CONTROLS, value32); pr_dbg("VMX_PROC_VM_EXEC_CONTROLS: 0x%x ", value32); /* Set up secondary processor based VM execution controls - pg 2901 * 24.6.2. Set up for: * Enable EPT * Enable RDTSCP * Unrestricted * guest (optional) */ value32 = msr_read(MSR_IA32_VMX_PROCBASED_CTLS2); value32 |= (VMX_PROCBASED_CTLS2_EPT | VMX_PROCBASED_CTLS2_RDTSCP | VMX_PROCBASED_CTLS2_UNRESTRICT); if (is_vapic_supported()) { value32 |= VMX_PROCBASED_CTLS2_VAPIC; if (is_vapic_virt_reg_supported()) value32 |= VMX_PROCBASED_CTLS2_VAPIC_REGS; if (is_vapic_intr_delivery_supported()) value32 |= VMX_PROCBASED_CTLS2_VIRQ; else /* * This field exists only on processors that support * the 1-setting of the "use TPR shadow" * VM-execution control. * * Set up TPR threshold for virtual interrupt delivery * - pg 2904 24.6.8 */ exec_vmwrite(VMX_TPR_THRESHOLD, 0); } if (cpu_has_cap(X86_FEATURE_OSXSAVE)) { exec_vmwrite64(VMX_XSS_EXITING_BITMAP_FULL, 0); value32 |= VMX_PROCBASED_CTLS2_XSVE_XRSTR; } exec_vmwrite(VMX_PROC_VM_EXEC_CONTROLS2, value32); pr_dbg("VMX_PROC_VM_EXEC_CONTROLS2: 0x%x ", value32); if (is_vapic_supported()) { /*APIC-v, config APIC-access address*/ value64 = apicv_get_apic_access_addr(vcpu->vm); exec_vmwrite64(VMX_APIC_ACCESS_ADDR_FULL, value64); /*APIC-v, config APIC virtualized page address*/ value64 = apicv_get_apic_page_addr(vcpu->arch_vcpu.vlapic); exec_vmwrite64(VMX_VIRTUAL_APIC_PAGE_ADDR_FULL, value64); if (is_vapic_intr_delivery_supported()) { /* these fields are supported only on processors * that support the 1-setting of the "virtual-interrupt * delivery" VM-execution control */ exec_vmwrite64(VMX_EOI_EXIT0_FULL, -1UL); exec_vmwrite64(VMX_EOI_EXIT1_FULL, -1UL); exec_vmwrite64(VMX_EOI_EXIT2_FULL, -1UL); exec_vmwrite64(VMX_EOI_EXIT3_FULL, -1UL); } } /* Check for EPT support */ if (is_ept_supported()) pr_dbg("EPT is supported"); else pr_err("Error: EPT is not supported"); /* Load EPTP execution control * TODO: introduce API to make this data driven based * on VMX_EPT_VPID_CAP */ value64 = vm->arch_vm.nworld_eptp | (3 << 3) | 6; exec_vmwrite64(VMX_EPT_POINTER_FULL, value64); pr_dbg("VMX_EPT_POINTER: 0x%016llx ", value64); /* Set up guest exception mask bitmap setting a bit * causes a VM exit * on corresponding guest * exception - pg 2902 24.6.3 * enable VM exit on MC and DB */ value32 = (1 << IDT_MC) | (1u << IDT_DB); exec_vmwrite(VMX_EXCEPTION_BITMAP, value32); /* Set up page fault error code mask - second paragraph * pg 2902 * 24.6.3 - guest page fault exception causing * vmexit is governed by * both VMX_EXCEPTION_BITMAP and * VMX_PF_EC_MASK */ exec_vmwrite(VMX_PF_EC_MASK, 0); /* Set up page fault error code match - second paragraph * pg 2902 * 24.6.3 - guest page fault exception causing * vmexit is governed by * both VMX_EXCEPTION_BITMAP and * VMX_PF_EC_MATCH */ exec_vmwrite(VMX_PF_EC_MATCH, 0); /* Set up CR3 target count - An execution of mov to CR3 * by guest * causes HW to evaluate operand match with * one of N CR3-Target Value * registers. The CR3 target * count values tells the number of * target-value regs to evaluate */ exec_vmwrite(VMX_CR3_TARGET_COUNT, 0); /* Set up IO bitmap register A and B - pg 2902 24.6.4 */ value64 = HVA2HPA(vm->arch_vm.iobitmap[0]); exec_vmwrite64(VMX_IO_BITMAP_A_FULL, value64); pr_dbg("VMX_IO_BITMAP_A: 0x%016llx ", value64); value64 = HVA2HPA(vm->arch_vm.iobitmap[1]); exec_vmwrite64(VMX_IO_BITMAP_B_FULL, value64); pr_dbg("VMX_IO_BITMAP_B: 0x%016llx ", value64); init_msr_emulation(vcpu); /* Set up executive VMCS pointer - pg 2905 24.6.10 */ exec_vmwrite64(VMX_EXECUTIVE_VMCS_PTR_FULL, 0); /* Setup Time stamp counter offset - pg 2902 24.6.5 */ exec_vmwrite64(VMX_TSC_OFFSET_FULL, 0); /* Set up the link pointer */ exec_vmwrite64(VMX_VMS_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFF); /* Natural-width */ pr_dbg("Natural-width*********"); /* Read the CR0 fixed0 / fixed1 MSR registers */ fixed0 = msr_read(MSR_IA32_VMX_CR0_FIXED0); fixed1 = msr_read(MSR_IA32_VMX_CR0_FIXED1); if (get_vcpu_mode(vcpu) == REAL_MODE) { /* Check to see if unrestricted guest support is available */ if (msr_read(MSR_IA32_VMX_MISC) & (1 << 5)) { /* Adjust fixed bits as they can/will reflect incorrect * settings that ARE valid in unrestricted guest mode. * Both PG and PE bits can bit changed in unrestricted * guest mode. */ fixed0 &= ~(CR0_PG | CR0_PE); fixed1 |= (CR0_PG | CR0_PE); /* Log success for unrestricted mode being present */ pr_dbg("Unrestricted support is available. "); } else { /* Log failure for unrestricted mode NOT being * present */ pr_err("Error: Unrestricted support is not available"); /* IA32_VMX_MISC bit 5 clear */ } } /* (get_vcpu_mode(vcpu) == REAL_MODE) */ /* Output fixed CR0 values */ pr_dbg("Fixed0 CR0 value: 0x%x", fixed0); pr_dbg("Fixed1 CR0 value: 0x%x", fixed1); /* Determine which bits are "flexible" in CR0 - allowed to be changed * as per arch manual in VMX operation. Any bits that are different * between fixed0 and fixed1 are "flexible" and the guest can change. */ value32 = fixed0 ^ fixed1; /* Set the CR0 mask to the inverse of the "flexible" bits */ value32 = ~value32; exec_vmwrite(VMX_CR0_MASK, value32); /* Output CR0 mask value */ pr_dbg("CR0 mask value: 0x%x", value32); /* Calculate the CR0 shadow register value that will be used to enforce * the correct values for host owned bits */ value32 = (fixed0 | fixed1) & value32; exec_vmwrite(VMX_CR0_READ_SHADOW, value32); /* Output CR0 shadow value */ pr_dbg("CR0 shadow value: 0x%x", value32); /* Read the CR4 fixed0 / fixed1 MSR registers */ fixed0 = msr_read(MSR_IA32_VMX_CR4_FIXED0); fixed1 = msr_read(MSR_IA32_VMX_CR4_FIXED1); /* Output fixed CR0 values */ pr_dbg("Fixed0 CR4 value: 0x%x", fixed0); pr_dbg("Fixed1 CR4 value: 0x%x", fixed1); /* Determine which bits are "flexible" in CR4 - allowed to be changed * as per arch manual in VMX operation. Any bits that are different * between fixed0 and fixed1 are "flexible" and the guest can change. */ value32 = fixed0 ^ fixed1; /* Set the CR4 mask to the inverse of the "flexible" bits */ value32 = ~value32; exec_vmwrite(VMX_CR4_MASK, value32); /* Output CR4 mask value */ pr_dbg("CR4 mask value: 0x%x", value32); /* Calculate the CR4 shadow register value that will be used to enforce * the correct values for host owned bits */ value32 = (fixed0 | fixed1) & value32; exec_vmwrite(VMX_CR4_READ_SHADOW, value32); /* Output CR4 shadow value */ pr_dbg("CR4 shadow value: 0x%x", value32); /* The CR3 target registers work in concert with VMX_CR3_TARGET_COUNT * field. Using these registers guest CR3 access can be managed. i.e., * if operand does not match one of these register values a VM exit * would occur */ exec_vmwrite(VMX_CR3_TARGET_0, 0); exec_vmwrite(VMX_CR3_TARGET_1, 0); exec_vmwrite(VMX_CR3_TARGET_2, 0); exec_vmwrite(VMX_CR3_TARGET_3, 0); } static void init_entry_ctrl(__unused struct vcpu *vcpu) { uint32_t value32; /* Log messages to show initializing VMX entry controls */ pr_dbg("*************************"); pr_dbg("Initialize Entry control "); pr_dbg("*************************"); /* Set up VMX entry controls - pg 2908 24.8.1 * Set IA32e guest mode - * on VM entry processor is in IA32e 64 bitmode * Start guest with host * IA32_PAT and IA32_EFER */ value32 = msr_read(MSR_IA32_VMX_ENTRY_CTLS); if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) value32 |= (VMX_ENTRY_CTLS_IA32E_MODE); value32 |= (VMX_ENTRY_CTLS_LOAD_EFER | VMX_ENTRY_CTLS_LOAD_PAT); exec_vmwrite(VMX_ENTRY_CONTROLS, value32); pr_dbg("VMX_ENTRY_CONTROLS: 0x%x ", value32); /* Set up VMX entry MSR load count - pg 2908 24.8.2 Tells the number of * MSRs on load from memory on VM entry from mem address provided by * VM-entry MSR load address field */ exec_vmwrite(VMX_ENTRY_MSR_LOAD_COUNT, 0); /* Set up VM entry interrupt information field pg 2909 24.8.3 */ exec_vmwrite(VMX_ENTRY_INT_INFO_FIELD, 0); /* Set up VM entry exception error code - pg 2910 24.8.3 */ exec_vmwrite(VMX_ENTRY_EXCEPTION_EC, 0); /* Set up VM entry instruction length - pg 2910 24.8.3 */ exec_vmwrite(VMX_ENTRY_INSTR_LENGTH, 0); } static void init_exit_ctrl(__unused struct vcpu *vcpu) { uint32_t value32; /* Log messages to show initializing VMX entry controls */ pr_dbg("************************"); pr_dbg("Initialize Exit control "); pr_dbg("************************"); /* Set up VM exit controls - pg 2907 24.7.1 for: Host address space * size is 64 bit Set up to acknowledge interrupt on exit, if 1 the HW * acks the interrupt in VMX non-root and saves the interrupt vector to * the relevant VM exit field for further processing by Hypervisor * Enable saving and loading of IA32_PAT and IA32_EFER on VMEXIT Enable * saving of pre-emption timer on VMEXIT */ value32 = msr_read(MSR_IA32_VMX_EXIT_CTLS); value32 |= (VMX_EXIT_CTLS_ACK_IRQ | VMX_EXIT_CTLS_SAVE_PAT | VMX_EXIT_CTLS_LOAD_PAT | VMX_EXIT_CTLS_LOAD_EFER | VMX_EXIT_CTLS_SAVE_EFER | VMX_EXIT_CTLS_HOST_ADDR64); exec_vmwrite(VMX_EXIT_CONTROLS, value32); pr_dbg("VMX_EXIT_CONTROL: 0x%x ", value32); /* Set up VM exit MSR store and load counts pg 2908 24.7.2 - tells the * HW number of MSRs to stored to mem and loaded from mem on VM exit. * The 64 bit VM-exit MSR store and load address fields provide the * corresponding addresses */ exec_vmwrite(VMX_EXIT_MSR_STORE_COUNT, 0); exec_vmwrite(VMX_EXIT_MSR_LOAD_COUNT, 0); } #ifdef CONFIG_EFI_STUB static void override_uefi_vmcs(struct vcpu *vcpu) { uint64_t field; struct run_context *cur_context = &vcpu->arch_vcpu.contexts[vcpu->arch_vcpu.cur_context]; if (get_vcpu_mode(vcpu) == PAGE_PROTECTED_MODE) { /* Set up guest CR0 field */ field = VMX_GUEST_CR0; cur_context->cr0 = efi_ctx->cr0 | CR0_PG | CR0_PE | CR0_NE; exec_vmwrite(field, cur_context->cr0 & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR0: 0x%016llx ", cur_context->cr0); /* Set up guest CR3 field */ field = VMX_GUEST_CR3; cur_context->cr3 = efi_ctx->cr3; exec_vmwrite(field, cur_context->cr3 & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR3: 0x%016llx ", cur_context->cr3); /* Set up guest CR4 field */ field = VMX_GUEST_CR4; cur_context->cr4 = efi_ctx->cr4 | CR4_VMXE; exec_vmwrite(field, cur_context->cr4 & 0xFFFFFFFF); pr_dbg("VMX_GUEST_CR4: 0x%016llx ", cur_context->cr4); /* Selector */ field = VMX_GUEST_CS_SEL; exec_vmwrite(field, efi_ctx->cs_sel); pr_dbg("VMX_GUEST_CS_SEL: 0x%x ", efi_ctx->cs_sel); /* Access */ field = VMX_GUEST_CS_ATTR; exec_vmwrite(field, efi_ctx->cs_ar); pr_dbg("VMX_GUEST_CS_ATTR: 0x%x ", efi_ctx->cs_ar); field = VMX_GUEST_ES_SEL; exec_vmwrite(field, efi_ctx->es_sel); pr_dbg("VMX_GUEST_ES_SEL: 0x%x ", efi_ctx->es_sel); field = VMX_GUEST_SS_SEL; exec_vmwrite(field, efi_ctx->ss_sel); pr_dbg("VMX_GUEST_SS_SEL: 0x%x ", efi_ctx->ss_sel); field = VMX_GUEST_DS_SEL; exec_vmwrite(field, efi_ctx->ds_sel); pr_dbg("VMX_GUEST_DS_SEL: 0x%x ", efi_ctx->ds_sel); field = VMX_GUEST_FS_SEL; exec_vmwrite(field, efi_ctx->fs_sel); pr_dbg("VMX_GUEST_FS_SEL: 0x%x ", efi_ctx->fs_sel); field = VMX_GUEST_GS_SEL; exec_vmwrite(field, efi_ctx->gs_sel); pr_dbg("VMX_GUEST_GS_SEL: 0x%x ", efi_ctx->gs_sel); /* Base */ field = VMX_GUEST_ES_BASE; exec_vmwrite(field, efi_ctx->es_sel << 4); field = VMX_GUEST_SS_BASE; exec_vmwrite(field, efi_ctx->ss_sel << 4); field = VMX_GUEST_DS_BASE; exec_vmwrite(field, efi_ctx->ds_sel << 4); field = VMX_GUEST_FS_BASE; exec_vmwrite(field, efi_ctx->fs_sel << 4); field = VMX_GUEST_GS_BASE; exec_vmwrite(field, efi_ctx->gs_sel << 4); /* RSP */ field = VMX_GUEST_RSP; exec_vmwrite(field, efi_ctx->rsp); pr_dbg("GUEST RSP on VMEntry %x ", efi_ctx->rsp); /* GDTR Base */ field = VMX_GUEST_GDTR_BASE; exec_vmwrite(field, (uint64_t)efi_ctx->gdt.base); pr_dbg("VMX_GUEST_GDTR_BASE: 0x%x ", efi_ctx->gdt.base); /* GDTR Limit */ field = VMX_GUEST_GDTR_LIMIT; exec_vmwrite(field, efi_ctx->gdt.limit); pr_dbg("VMX_GUEST_GDTR_LIMIT: 0x%x ", efi_ctx->gdt.limit); /* IDTR Base */ field = VMX_GUEST_IDTR_BASE; exec_vmwrite(field, (uint64_t)efi_ctx->idt.base); pr_dbg("VMX_GUEST_IDTR_BASE: 0x%x ", efi_ctx->idt.base); /* IDTR Limit */ field = VMX_GUEST_IDTR_LIMIT; exec_vmwrite(field, efi_ctx->idt.limit); pr_dbg("VMX_GUEST_IDTR_LIMIT: 0x%x ", efi_ctx->idt.limit); } /* Interrupt */ field = VMX_GUEST_RFLAGS; /* clear flags for CF/PF/AF/ZF/SF/OF */ cur_context->rflags = efi_ctx->rflags & ~(0x8d5); exec_vmwrite(field, cur_context->rflags); pr_dbg("VMX_GUEST_RFLAGS: 0x%016llx ", cur_context->rflags); } #endif int init_vmcs(struct vcpu *vcpu) { uint32_t vmx_rev_id; int status = 0; uint64_t vmcs_pa; if (vcpu == NULL) status = -EINVAL; ASSERT(status == 0, "Incorrect arguments"); /* Log message */ pr_dbg("Initializing VMCS"); /* Obtain the VM Rev ID from HW and populate VMCS page with it */ vmx_rev_id = msr_read(MSR_IA32_VMX_BASIC); memcpy_s((void *) vcpu->arch_vcpu.vmcs, 4, &vmx_rev_id, 4); /* Execute VMCLEAR on current VMCS */ vmcs_pa = HVA2HPA(vcpu->arch_vcpu.vmcs); status = exec_vmclear((void *)&vmcs_pa); ASSERT(status == 0, "Failed VMCLEAR during VMCS setup!"); /* Load VMCS pointer */ status = exec_vmptrld((void *)&vmcs_pa); ASSERT(status == 0, "Failed VMCS pointer load!"); /* Initialize the Virtual Machine Control Structure (VMCS) */ init_host_state(vcpu); init_guest_state(vcpu); init_exec_ctrl(vcpu); init_entry_ctrl(vcpu); init_exit_ctrl(vcpu); #ifdef CONFIG_EFI_STUB if (is_vm0(vcpu->vm) && vcpu->pcpu_id == 0) override_uefi_vmcs(vcpu); #endif /* Return status to caller */ return status; }