zephyr/arch/xtensa/core/fatal.c

122 lines
3.5 KiB
C

/*
* Copyright (c) 2016 Cadence Design Systems, Inc.
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel_arch_data.h>
#ifdef CONFIG_PRINTK
#include <misc/printk.h>
#define PR_EXC(...) printk(__VA_ARGS__)
#else
#define PR_EXC(...)
#endif /* CONFIG_PRINTK */
const NANO_ESF _default_esf = {
{0xdeaddead}, /* sp */
0xdeaddead, /* pc */
};
extern void exit(int exit_code);
/**
*
* @brief Nanokernel fatal error handler
*
* This routine is called when fatal error conditions are detected by software
* and is responsible only for reporting the error. Once reported, it then
* invokes the user provided routine _SysFatalErrorHandler() which is
* responsible for implementing the error handling policy.
*
* The caller is expected to always provide a usable ESF. In the event that the
* fatal error does not have a hardware generated ESF, the caller should either
* create its own or use a pointer to the global default ESF <_default_esf>.
*
* @param reason the reason that the handler was called
* @param pEsf pointer to the exception stack frame
*
* @return This function does not return.
*/
void _NanoFatalErrorHandler(unsigned int reason, const NANO_ESF *pEsf)
{
switch (reason) {
case _NANO_ERR_INVALID_TASK_EXIT:
PR_EXC("***** Invalid Exit Software Error! *****\n");
break;
#if defined(CONFIG_STACK_CANARIES)
case _NANO_ERR_STACK_CHK_FAIL:
PR_EXC("***** Stack Check Fail! *****\n");
break;
#endif /* CONFIG_STACK_CANARIES */
case _NANO_ERR_ALLOCATION_FAIL:
PR_EXC("**** Kernel Allocation Failure! ****\n");
break;
default:
PR_EXC("**** Unknown Fatal Error %d! ****\n", reason);
break;
}
PR_EXC("Current thread ID = 0x%x\n"
"Faulting instruction address = 0x%x\n",
sys_thread_self_get(),
pEsf->pc);
/*
* Now that the error has been reported, call the user implemented
* policy
* to respond to the error. The decisions as to what responses are
* appropriate to the various errors are something the customer must
* decide.
*/
/* TODO: call _SysFatalErrorHandler(reason, pEsf); */
exit(253);
}
void FatalErrorHandler(void)
{
unsigned int tmpReg = 0;
unsigned int Esf[5];
__asm__ volatile("rsr %0, 177\n\t" : "=r"(tmpReg)); /* epc */
Esf[0] = tmpReg;
__asm__ volatile("rsr %0, 232\n\t" : "=r"(tmpReg)); /* exccause */
Esf[1] = tmpReg;
__asm__ volatile("rsr %0, 209\n\t" : "=r"(tmpReg)); /* excsave */
Esf[2] = tmpReg;
__asm__ volatile("rsr %0, 230\n\t" : "=r"(tmpReg)); /* ps */
Esf[3] = tmpReg;
__asm__ volatile("rsr %0, 238\n\t" : "=r"(tmpReg)); /* excvaddr */
Esf[4] = tmpReg;
PR_EXC("Error\nEPC = 0x%x\n"
"EXCCAUSE = 0x%x\n"
"EXCSAVE = 0x%x\n"
"PS = 0x%x\n"
"EXCVADDR = 0x%x\n",
Esf[0], Esf[1], Esf[2], Esf[3], Esf[4]);
exit(255);
}
void ReservedInterruptHandler(unsigned int intNo)
{
unsigned int tmpReg = 0;
unsigned int Esf[5];
__asm__ volatile("rsr %0, 177\n\t" : "=r"(tmpReg)); /* epc */
Esf[0] = tmpReg;
__asm__ volatile("rsr %0, 232\n\t" : "=r"(tmpReg)); /* exccause */
Esf[1] = tmpReg;
__asm__ volatile("rsr %0, 209\n\t" : "=r"(tmpReg)); /* excsave */
Esf[2] = tmpReg;
__asm__ volatile("rsr %0, 230\n\t" : "=r"(tmpReg)); /* ps */
Esf[3] = tmpReg;
__asm__ volatile("rsr %0, 228\n\t" : "=r"(tmpReg)); /* intenable */
Esf[4] = tmpReg;
PR_EXC("Error, unhandled interrupt\n"
"EPC = 0x%x\n"
"EXCCAUSE = 0x%x\n"
"EXCSAVE = 0x%x\n"
"PS = 0x%x\n"
"INTENABLE = 0x%x\n"
"INTERRUPT = 0x%x\n",
Esf[0], Esf[1], Esf[2], Esf[3], Esf[4], (1 << intNo));
exit(254);
}