zephyr/drivers/gpio/gpio_intel_apl.c

470 lines
12 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Intel Apollo Lake SoC GPIO Controller Driver
*
* The GPIO controller on Intel Apollo Lake SoC serves
* both GPIOs and Pinmuxing function. This driver provides
* the GPIO function.
*
* Currently, this driver does not handle pin triggering.
*
* Note that since the GPIO controller controls more then 32 pins,
* the pin_mux of the API does not work anymore.
*/
#include <errno.h>
#include <gpio.h>
#include <soc.h>
#include <sys_io.h>
#include <misc/slist.h>
#include "gpio_utils.h"
#define NUM_ISLANDS 4
#define REG_PAD_BASE_ADDR 0x000C
#define REG_MISCCFG 0x0010
#define MISCCFG_IRQ_ROUTE_POS 3
#define REG_PAD_OWNER_BASE 0x0020
#define PAD_OWN_MASK 0x03
#define PAD_OWN_HOST 0
#define PAD_OWN_CSME 1
#define PAD_OWN_ISH 2
#define PAD_OWN_IE 3
#define REG_PAD_HOST_SW_OWNER 0x0080
#define PAD_HOST_SW_OWN_GPIO 1
#define PAD_HOST_SW_OWN_ACPI 0
#define REG_GPI_INT_STS_BASE 0x0100
#define REG_GPI_INT_EN_BASE 0x0110
#define PAD_CFG0_RXPADSTSEL BIT(29)
#define PAD_CFG0_RXRAW1 BIT(28)
#define PAD_CFG0_PMODE_MASK (0x0F << 10)
#define PAD_CFG0_RXEVCFG_POS 25
#define PAD_CFG0_RXEVCFG_MASK (0x03 << PAD_CFG0_RXEVCFG_POS)
#define PAD_CFG0_RXEVCFG_LEVEL (0 << PAD_CFG0_RXEVCFG_POS)
#define PAD_CFG0_RXEVCFG_EDGE (1 << PAD_CFG0_RXEVCFG_POS)
#define PAD_CFG0_RXEVCFG_DRIVE0 (2 << PAD_CFG0_RXEVCFG_POS)
#define PAD_CFG0_PREGFRXSEL BIT(24)
#define PAD_CFG0_RXINV BIT(23)
#define PAD_CFG0_RXDIS BIT(9)
#define PAD_CFG0_TXDIS BIT(8)
#define PAD_CFG0_RXSTATE BIT(1)
#define PAD_CFG0_RXSTATE_POS 1
#define PAD_CFG0_TXSTATE BIT(0)
#define PAD_CFG0_TXSTATE_POS 0
#define PAD_CFG1_IOSTERM_POS 8
#define PAD_CFG1_IOSTERM_MASK (0x03 << PAD_CFG1_IOSTERM_POS)
#define PAD_CFG1_IOSTERM_FUNC (0 << PAD_CFG1_IOSTERM_POS)
#define PAD_CFG1_IOSTERM_DISPUD (1 << PAD_CFG1_IOSTERM_POS)
#define PAD_CFG1_IOSTERM_PU (2 << PAD_CFG1_IOSTERM_POS)
#define PAD_CFG1_IOSTERM_PD (3 << PAD_CFG1_IOSTERM_POS)
#define PAD_CFG1_TERM_POS 10
#define PAD_CFG1_TERM_MASK (0x0F << PAD_CFG1_TERM_POS)
#define PAD_CFG1_TERM_NONE (0x00 << PAD_CFG1_TERM_POS)
#define PAD_CFG1_TERM_PD (0x04 << PAD_CFG1_TERM_POS)
#define PAD_CFG1_TERM_PU (0x0C << PAD_CFG1_TERM_POS)
#define PAD_CFG1_IOSSTATE_POS 14
#define PAD_CFG1_IOSSTATE_MASK (0x0F << PAD_CFG1_IOSSTATE_POS)
#define PAD_CFG1_IOSSTATE_IGNORE (0x0F << PAD_CFG1_IOSSTATE_POS)
struct apl_gpio_island {
u32_t reg_base;
u32_t num_pins;
};
struct gpio_intel_apl_config {
struct apl_gpio_island islands[NUM_ISLANDS];
};
struct gpio_intel_apl_data {
/* Pad base address for each island */
u32_t pad_base[NUM_ISLANDS];
sys_slist_t cb;
};
static inline void extract_island_and_pin(u32_t pin, u32_t *island,
u32_t *raw_pin)
{
*island = pin >> APL_GPIO_ISLAND_POS;
*raw_pin = pin & APL_GPIO_PIN_MASK;
}
#ifdef CONFIG_GPIO_INTEL_APL_CHECK_PERMS
/**
* @brief Check if host has permission to alter this GPIO pin.
*
* @param "struct device *dev" Device struct
* @param "u32_t island" Island index
* @param "u32_t raw_pin" Raw GPIO pin
*
* @return true if host owns the GPIO pin, false otherwise
*/
static bool check_perm(struct device *dev, u32_t island, u32_t raw_pin)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
u32_t offset, val;
/* First is to establish that host software owns the pin */
/* read the Pad Ownership register related to the pin */
offset = REG_PAD_OWNER_BASE + ((raw_pin >> 3) << 2);
val = sys_read32(cfg->islands[island].reg_base + offset);
/* get the bits about ownership */
offset = raw_pin % 8;
val = (val >> offset) & PAD_OWN_MASK;
if (val) {
/* PAD_OWN_HOST == 0, so !0 => false*/
return false;
}
/* Also need to make sure the function of pad is GPIO */
offset = data->pad_base[island] + (raw_pin << 3);
val = sys_read32(cfg->islands[island].reg_base + offset);
if (val & PAD_CFG0_PMODE_MASK) {
/* mode is not zero => not functioning as GPIO */
return false;
}
return true;
}
#else
#define check_perm(...) (1)
#endif
static void gpio_intel_apl_isr(void *arg)
{
struct device *dev = arg;
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
struct gpio_callback *cb;
u32_t island, raw_pin, reg;
SYS_SLIST_FOR_EACH_CONTAINER(&data->cb, cb, node) {
extract_island_and_pin(cb->pin, &island, &raw_pin);
reg = cfg->islands[island].reg_base + REG_GPI_INT_STS_BASE;
if (sys_bitfield_test_and_set_bit(reg, raw_pin)) {
__ASSERT(cb->handler, "No callback handler!");
cb->handler(dev, cb, cb->pin);
}
}
}
static int gpio_intel_apl_config(struct device *dev, int access_op,
u32_t pin, int flags)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
u32_t island, raw_pin, reg, cfg0, cfg1, val;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
if ((flags & GPIO_INT) && (flags & GPIO_DIR_OUT)) {
return -EINVAL;
}
if ((flags & GPIO_POL_MASK) == GPIO_POL_INV) {
/* hardware cannot invert signal */
return -EINVAL;
}
extract_island_and_pin(pin, &island, &raw_pin);
if (!check_perm(dev, island, raw_pin)) {
return -EPERM;
}
/* Set GPIO to trigger legacy interrupt */
if (flags & GPIO_INT) {
reg = cfg->islands[island].reg_base + REG_PAD_HOST_SW_OWNER;
sys_bitfield_set_bit(reg, raw_pin);
}
/* read in pad configuration register */
reg = cfg->islands[island].reg_base
+ data->pad_base[island] + (raw_pin * 8);
cfg0 = sys_read32(reg);
cfg1 = sys_read32(reg + 4);
/* change direction */
if ((flags & GPIO_DIR_MASK) == GPIO_DIR_OUT) {
/* pin to output */
cfg0 &= ~PAD_CFG0_TXDIS;
cfg0 |= PAD_CFG0_RXDIS;
} else {
/* pin to input */
cfg0 &= ~PAD_CFG0_RXDIS;
cfg0 |= PAD_CFG0_TXDIS;
/* don't override RX to 1 */
cfg0 &= ~PAD_CFG0_RXRAW1;
}
/* clear some bits first before interrupt setup */
cfg0 &= ~(PAD_CFG0_RXPADSTSEL | PAD_CFG0_RXINV
| PAD_CFG0_RXEVCFG_MASK);
/* setup interrupt if desired */
if (flags & GPIO_INT) {
/* invert signal for interrupt controller */
if (flags & GPIO_INT_ACTIVE_LOW) {
cfg0 |= PAD_CFG0_RXINV;
}
/* level == 0 / edge == 1*/
if (flags & GPIO_INT_EDGE) {
cfg0 |= PAD_CFG0_RXEVCFG_EDGE;
}
} else {
/* set RX conf to drive 0 */
cfg0 |= PAD_CFG0_RXEVCFG_DRIVE0;
}
/* pull-up or pull-down */
val = flags & GPIO_PUD_MASK;
cfg1 &= ~PAD_CFG1_TERM_MASK;
if (val == GPIO_PUD_PULL_UP) {
cfg1 |= PAD_CFG1_TERM_PU;
} else if (val == GPIO_PUD_PULL_DOWN) {
cfg1 |= PAD_CFG1_TERM_PD;
} else {
cfg1 |= PAD_CFG1_TERM_NONE;
}
/* set IO Standby Termination to function mode */
cfg1 &= ~PAD_CFG1_IOSTERM_MASK;
/* IO Standby state to TX,RX enabled */
cfg1 &= ~PAD_CFG1_IOSSTATE_MASK;
/* write back pad configuration register after all changes */
sys_write32(cfg0, reg);
sys_write32(cfg1, (reg + 4));
return 0;
}
static int gpio_intel_apl_write(struct device *dev, int access_op,
u32_t pin, u32_t value)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
u32_t island, raw_pin, reg, val;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
extract_island_and_pin(pin, &island, &raw_pin);
if (!check_perm(dev, island, raw_pin)) {
return -EPERM;
}
reg = cfg->islands[island].reg_base
+ data->pad_base[island] + (raw_pin * 8);
val = sys_read32(reg);
if (value) {
val |= PAD_CFG0_TXSTATE;
} else {
val &= ~PAD_CFG0_TXSTATE;
}
sys_write32(val, reg);
return 0;
}
static int gpio_intel_apl_read(struct device *dev, int access_op,
u32_t pin, u32_t *value)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
u32_t island, raw_pin, reg, val;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
extract_island_and_pin(pin, &island, &raw_pin);
if (!check_perm(dev, island, raw_pin)) {
return -EPERM;
}
reg = cfg->islands[island].reg_base
+ data->pad_base[island] + (raw_pin * 8);
val = sys_read32(reg);
if (!(val & PAD_CFG0_TXDIS)) {
/* If TX is not disabled, return TX_STATE */
*value = val & PAD_CFG0_TXSTATE;
} else {
/* else just return RX_STATE */
*value = val & PAD_CFG0_RXSTATE;
}
return 0;
}
static int gpio_intel_apl_manage_callback(struct device *dev,
struct gpio_callback *callback,
bool set)
{
struct gpio_intel_apl_data *data = dev->driver_data;
_gpio_manage_callback(&data->cb, callback, set);
return 0;
}
static int gpio_intel_apl_enable_callback(struct device *dev,
int access_op, u32_t pin)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
u32_t island, raw_pin, reg;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
extract_island_and_pin(pin, &island, &raw_pin);
if (!check_perm(dev, island, raw_pin)) {
return -EPERM;
}
/* clear (by setting) interrupt status bit */
reg = cfg->islands[island].reg_base + REG_GPI_INT_STS_BASE;
sys_bitfield_set_bit(reg, raw_pin);
/* enable interrupt bit */
reg = cfg->islands[island].reg_base + REG_GPI_INT_EN_BASE;
sys_bitfield_set_bit(reg, raw_pin);
return 0;
}
static int gpio_intel_apl_disable_callback(struct device *dev,
int access_op, u32_t pin)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
u32_t island, raw_pin, reg;
if (access_op != GPIO_ACCESS_BY_PIN) {
return -ENOTSUP;
}
extract_island_and_pin(pin, &island, &raw_pin);
if (!check_perm(dev, island, raw_pin)) {
return -EPERM;
}
/* disable interrupt bit */
reg = cfg->islands[island].reg_base + REG_GPI_INT_EN_BASE;
sys_bitfield_clear_bit(reg, raw_pin);
return 0;
}
static const struct gpio_driver_api gpio_intel_apl_api = {
.config = gpio_intel_apl_config,
.write = gpio_intel_apl_write,
.read = gpio_intel_apl_read,
.manage_callback = gpio_intel_apl_manage_callback,
.enable_callback = gpio_intel_apl_enable_callback,
.disable_callback = gpio_intel_apl_disable_callback,
};
static void gpio_intel_apl_irq_config(struct device *dev);
int gpio_intel_apl_init(struct device *dev)
{
const struct gpio_intel_apl_config *cfg = dev->config->config_info;
struct gpio_intel_apl_data *data = dev->driver_data;
int i;
gpio_intel_apl_irq_config(dev);
for (i = 0; i < NUM_ISLANDS; i++) {
data->pad_base[i] = sys_read32(cfg->islands[i].reg_base
+ REG_PAD_BASE_ADDR);
/* Set to route interrupt through IRQ 14 */
sys_bitfield_clear_bit(data->pad_base[i] + REG_MISCCFG,
MISCCFG_IRQ_ROUTE_POS);
}
dev->driver_api = &gpio_intel_apl_api;
return 0;
}
static const struct gpio_intel_apl_config gpio_intel_apl_cfg = {
.islands = {
{
/* North island */
.reg_base = INTEL_APL_GPIO_0_BASE_ADDRESS_0,
.num_pins = 78,
},
{
/* Northwest island */
.reg_base = INTEL_APL_GPIO_0_BASE_ADDRESS_1,
.num_pins = 77,
},
{
/* West island */
.reg_base = INTEL_APL_GPIO_0_BASE_ADDRESS_2,
.num_pins = 47,
},
{
/* Southwest island */
.reg_base = INTEL_APL_GPIO_0_BASE_ADDRESS_3,
.num_pins = 43,
},
},
};
static struct gpio_intel_apl_data gpio_intel_apl_data;
DEVICE_AND_API_INIT(gpio_intel_apl, INTEL_APL_GPIO_0_LABEL,
gpio_intel_apl_init,
&gpio_intel_apl_data, &gpio_intel_apl_cfg,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&gpio_intel_apl_api);
static void gpio_intel_apl_irq_config(struct device *dev)
{
IRQ_CONNECT(INTEL_APL_GPIO_0_IRQ_0, INTEL_APL_GPIO_0_IRQ_0_PRIORITY,
gpio_intel_apl_isr, DEVICE_GET(gpio_intel_apl),
INTEL_APL_GPIO_0_IRQ_0_SENSE);
irq_enable(INTEL_APL_GPIO_0_IRQ_0);
}