zephyr/drivers/interrupt_controller/intc_mchp_ecia_xec.c

513 lines
14 KiB
C

/*
* Copyright (c) 2021 Microchip Technology Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @brief Driver for External interrupt controller in Microchip XEC devices
*
* Driver is currently implemented to support MEC172x ECIA GIRQs
*/
#define DT_DRV_COMPAT microchip_xec_ecia
#include <arch/cpu.h>
#include <arch/arm/aarch32/cortex_m/cmsis.h>
#include <device.h>
#include <soc.h>
#include <sys/__assert.h>
#include <drivers/clock_control/mchp_xec_clock_control.h>
#include <drivers/interrupt_controller/intc_mchp_xec_ecia.h>
/* defined at the SoC layer */
#define MCHP_FIRST_GIRQ MCHP_FIRST_GIRQ_NOS
#define MCHP_LAST_GIRQ MCHP_LAST_GIRQ_NOS
#define MCHP_XEC_DIRECT_CAPABLE MCHP_ECIA_DIRECT_BITMAP
#define GIRQ_ID_TO_BITPOS(id) ((id) + 8)
/*
* MEC SoC's have one and only one instance of ECIA. GIRQ8 register are located
* at the beginning of the ECIA block.
*/
#define ECIA_XEC_REG_BASE \
((struct ecia_regs *)(DT_REG_ADDR(DT_NODELABEL(ecia))))
#define ECS_XEC_REG_BASE \
((struct ecs_regs *)(DT_REG_ADDR(DT_NODELABEL(ecs))))
#define PCR_XEC_REG_BASE \
((struct pcr_regs *)(DT_REG_ADDR(DT_NODELABEL(pcr))))
#define ECIA_XEC_PCR_REG_IDX DT_INST_CLOCKS_CELL(0, regidx)
#define ECIA_XEC_PCR_BITPOS DT_INST_CLOCKS_CELL(0, bitpos)
#define ECIA_XEC_PCR_INFO \
MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(0, regidx), \
DT_INST_CLOCKS_CELL(0, bitpos))
struct xec_girq_config {
uintptr_t base;
uint8_t girq_id;
uint8_t num_srcs;
uint8_t sources[32];
};
struct xec_ecia_config {
uintptr_t ecia_base;
struct mchp_xec_pcr_clk_ctrl clk_ctrl;
const struct device *girq_node_handles[32];
};
struct xec_girq_src_data {
mchp_xec_ecia_callback_t cb;
void *data;
};
#define DEV_ECIA_CFG(ecia_dev) \
((const struct xec_ecia_config *const)(ecia_dev)->config)
#define DEV_GIRQ_CFG(girq_dev) \
((const struct xec_girq_config *const)(girq_dev)->config)
#define DEV_GIRQ_DATA(girq_dev) \
((struct xec_girq_src_data *const)(girq_dev)->data)
/*
* Enable/disable specified GIRQ's aggregated output. Aggrated output is the
* bit-wise or of all the GIRQ's result bits.
*/
void mchp_xec_ecia_girq_aggr_en(uint8_t girq_num, uint8_t enable)
{
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
if (enable) {
regs->BLK_EN_SET = BIT(girq_num);
} else {
regs->BLK_EN_CLR = BIT(girq_num);
}
}
void mchp_xec_ecia_girq_src_clr(uint8_t girq_num, uint8_t src_bit_pos)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].SRC = BIT(src_bit_pos);
}
void mchp_xec_ecia_girq_src_en(uint8_t girq_num, uint8_t src_bit_pos)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to set */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_SET = BIT(src_bit_pos);
}
void mchp_xec_ecia_girq_src_dis(uint8_t girq_num, uint8_t src_bit_pos)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_CLR = BIT(src_bit_pos);
}
void mchp_xec_ecia_girq_src_clr_bitmap(uint8_t girq_num, uint32_t bitmap)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].SRC = bitmap;
}
void mchp_xec_ecia_girq_src_en_bitmap(uint8_t girq_num, uint32_t bitmap)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_SET = bitmap;
}
void mchp_xec_ecia_girq_src_dis_bitmap(uint8_t girq_num, uint32_t bitmap)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_CLR = bitmap;
}
/*
* Return read-only GIRQ result register. Result is bit-wise and of source
* and enable registers.
*/
uint32_t mchp_xec_ecia_girq_result(uint8_t girq_num)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return 0U;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
return regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].RESULT;
}
/* Clear NVIC pending given the external NVIC input number (zero based) */
void mchp_xec_ecia_nvic_clr_pend(uint32_t nvic_num)
{
if (nvic_num >= ((SCnSCB->ICTR + 1) * 32)) {
return;
}
NVIC_ClearPendingIRQ(nvic_num);
}
/**
* @brief enable GIRQn interrupt for specific source
*
* @param girq is the GIRQ number (8 - 26)
* @param src is the interrupt source in the GIRQ (0 - 31)
*/
int mchp_xec_ecia_enable(int girq, int src)
{
if ((girq < MCHP_FIRST_GIRQ) || (girq > MCHP_LAST_GIRQ) ||
(src < 0) || (src > 31)) {
return -EINVAL;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to set */
regs->GIRQ[girq - MCHP_FIRST_GIRQ].EN_SET = BIT(src);
return 0;
}
/**
* @brief disable EXTI interrupt for specific line
*
* @param girq is the GIRQ number (8 - 26)
* @param src is the interrupt source in the GIRQ (0 - 31)
*/
int mchp_xec_ecia_disable(int girq, int src)
{
if ((girq < MCHP_FIRST_GIRQ) || (girq > MCHP_LAST_GIRQ) ||
(src < 0) || (src > 31)) {
return -EINVAL;
}
struct ecia_regs *regs = ECIA_XEC_REG_BASE;
/* write 1 to clear */
regs->GIRQ[girq - MCHP_FIRST_GIRQ].EN_CLR = BIT(src);
return 0;
}
/* forward reference */
static const struct device *get_girq_dev(int girq_num);
/**
* @brief set GIRQn interrupt source callback
*
* @param dev_girq is the GIRQn device handle
* @param src is the interrupt source in the GIRQ (0 - 31)
* @param cb user callback
* @param data user data
*/
int mchp_xec_ecia_set_callback_by_dev(const struct device *dev_girq, int src,
mchp_xec_ecia_callback_t cb, void *data)
{
if ((dev_girq == NULL) || (src < 0) || (src > 31)) {
return -EINVAL;
}
const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq);
struct xec_girq_src_data *girq_data = DEV_GIRQ_DATA(dev_girq);
/* source exists in this GIRQ? */
if (!(cfg->sources[src] & BIT(7))) {
return -EINVAL;
}
/* obtain the callback array index for the source */
int idx = (int)(cfg->sources[src] & ~BIT(7));
girq_data[idx].cb = cb;
girq_data[idx].data = data;
return 0;
}
/**
* @brief set GIRQn interrupt source callback
*
* @param girq is the GIRQ number (8 - 26)
* @param src is the interrupt source in the GIRQ (0 - 31)
* @param cb user callback
* @param data user data
*/
int mchp_xec_ecia_set_callback(int girq_num, int src,
mchp_xec_ecia_callback_t cb, void *data)
{
const struct device *dev = get_girq_dev(girq_num);
return mchp_xec_ecia_set_callback_by_dev(dev, src, cb, data);
}
/**
* @brief unset GIRQn interrupt source callback by device handle
*
* @param dev_girq is the GIRQn device handle
* @param src is the interrupt source in the GIRQ (0 - 31)
*/
int mchp_ecia_unset_callback_by_dev(const struct device *dev_girq, int src)
{
if ((dev_girq == NULL) || (src < 0) || (src > 31)) {
return -EINVAL;
}
const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq);
struct xec_girq_src_data *girq_data = DEV_GIRQ_DATA(dev_girq);
/* source exists in this GIRQ? */
if (!(cfg->sources[src] & BIT(7))) {
return -EINVAL;
}
/* obtain the callback array index for the source */
int idx = (int)(cfg->sources[src] & ~BIT(7));
girq_data[idx].cb = NULL;
girq_data[idx].data = NULL;
return 0;
}
/**
* @brief unset GIRQn interrupt source callback
*
* @param girq is the GIRQ number (8 - 26)
* @param src is the interrupt source in the GIRQ (0 - 31)
*/
int mchp_ecia_unset_callback(int girq_num, int src)
{
const struct device *dev = get_girq_dev(girq_num);
return mchp_ecia_unset_callback_by_dev(dev, src);
}
/*
* Create a build time flag to know if any aggregated GIRQ has been enabled.
* We make use of DT FOREACH macro to check GIRQ node status.
* Enabling a GIRQ node (status = "okay") implies you want it used in
* aggregated mode. Note, GIRQ 8-12, 24-26 are aggregated only by HW design.
* If a GIRQ node is disabled(status = "disabled") and is direct capable the
* other driver/application may use IRQ_CONNECT, irq_enable, and the helper
* functions in this driver to set/clear GIRQ enable bits and status.
* Leaving a node disabled also allows another driver/application to take over
* aggregation by managing the GIRQ itself.
*/
#define XEC_CHK_REQ_AGGR(n) DT_NODE_HAS_STATUS(n, okay) |
#define XEC_ECIA_REQUIRE_AGGR_ISR \
( \
DT_FOREACH_CHILD(DT_NODELABEL(ecia), XEC_CHK_REQ_AGGR) \
0)
/* static const uint32_t xec_chk_req = (XEC_ECIA_REQUIRE_AGGR_ISR); */
#if XEC_ECIA_REQUIRE_AGGR_ISR
/*
* Generic ISR for aggregated GIRQ's.
* GIRQ source(status) bits are latched (R/W1C). The peripheral status
* connected to the GIRQ source bit must be cleared first by the callback
* and this routine will clear the GIRQ source bit. If a callback was not
* registered for a source the enable will also be cleared to prevent
* interrupt storms.
* NOTE: dev_girq is a pointer to a GIRQ child device instance.
*/
static void xec_girq_isr(const struct device *dev_girq)
{
const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq);
struct xec_girq_src_data *data = DEV_GIRQ_DATA(dev_girq);
struct girq_regs *girq = (struct girq_regs *)cfg->base;
int girq_id = GIRQ_ID_TO_BITPOS(cfg->girq_id);
uint32_t idx = 0;
uint32_t result = girq->RESULT;
for (int i = 0; result && i < 32; i++) {
uint8_t bitpos = 31 - (__builtin_clz(result) & 0x1f);
/* is it an implemented source? */
if (cfg->sources[bitpos] & BIT(7)) {
/* yes, get the index by removing bit[7] flag */
idx = (uint32_t)cfg->sources[bitpos] & ~BIT(7);
/* callback registered? */
if (data[idx].cb) {
data[idx].cb(girq_id, bitpos, data[idx].data);
} else { /* no callback, clear the enable */
girq->EN_CLR = BIT(bitpos);
}
} else { /* paranoia, we should not get here... */
girq->EN_CLR = BIT(bitpos);
}
/* clear GIRQ latched status */
girq->SRC = BIT(bitpos);
result &= ~BIT(bitpos);
}
}
#endif
/**
* @brief initialize XEC ECIA driver
* NOTE: GIRQ22 is special used for waking the PLL from deep sleep when a
* peripheral receives data from an external entity (eSPI, I2C, etc). Once
* the data transfer is complete the system re-enters deep sleep unless the
* peripheral was configured to wake CPU after reception of data or event.
* GIRQ22 aggregated output and sources are not connected to the NVIC.
* We enable GIRQ22 aggregated output to ensure clock asynchronous wake
* functionality is operational.
*/
static int xec_ecia_init(const struct device *dev)
{
const struct xec_ecia_config *cfg =
(const struct xec_ecia_config *const) (dev->config);
const struct device *const clk_dev = DEVICE_DT_GET(DT_NODELABEL(pcr));
struct ecs_regs *const ecs = ECS_XEC_REG_BASE;
struct ecia_regs *const ecia = (struct ecia_regs *)cfg->ecia_base;
uint32_t n = 0, nr = 0;
int ret;
ret = clock_control_on(clk_dev,
(clock_control_subsys_t *)&cfg->clk_ctrl);
if (ret < 0) {
return ret;
}
/* Enable all direct NVIC connections */
ecs->INTR_CTRL |= BIT(0);
/* gate off all aggregated outputs */
ecia->BLK_EN_CLR = UINT32_MAX;
/* connect aggregated only GIRQs to NVIC */
ecia->BLK_EN_SET = MCHP_ECIA_AGGR_BITMAP;
/* Clear all GIRQn source enables */
for (n = 0; n < MCHP_GIRQS; n++) {
ecia->GIRQ[n].EN_CLR = UINT32_MAX;
}
/* Clear all external NVIC enables and pending status */
nr = SCnSCB->ICTR;
for (n = 0u; n <= nr; n++) {
NVIC->ICER[n] = UINT32_MAX;
NVIC->ICPR[n] = UINT32_MAX;
}
/* ecia->BLK_ACTIVE = xec_chk_req; */
return 0;
}
/* xec_config_girq_xxx.sources[] entries from GIRQ node */
#define XEC_GIRQ_SOURCES2(node_id, prop, idx) \
.sources[DT_PROP_BY_IDX(node_id, prop, idx)] = \
((uint8_t)(idx) | BIT(7)),
/* Parameter n is a child node-id */
#define GIRQ_XEC_DEVICE(n) \
static int xec_girq_init_##n(const struct device *dev); \
\
static struct xec_girq_src_data \
xec_data_girq_##n[DT_PROP_LEN(n, sources)]; \
\
static const struct xec_girq_config xec_config_girq_##n = { \
.base = DT_REG_ADDR(n), \
.girq_id = DT_PROP(n, girq_id), \
.num_srcs = DT_PROP_LEN(n, sources), \
DT_FOREACH_PROP_ELEM(n, sources, XEC_GIRQ_SOURCES2) \
}; \
\
DEVICE_DT_DEFINE(n, xec_girq_init_##n, \
NULL, &xec_data_girq_##n, &xec_config_girq_##n, \
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT, \
NULL); \
\
static int xec_girq_init_##n(const struct device *dev) \
{ \
mchp_xec_ecia_girq_aggr_en( \
GIRQ_ID_TO_BITPOS(DT_PROP(n, girq_id)), 1); \
\
IRQ_CONNECT(DT_IRQN(n), \
DT_IRQ(n, priority), \
xec_girq_isr, \
DEVICE_DT_GET(n), 0); \
\
irq_enable(DT_IRQN(n)); \
\
return 0; \
}
/*
* iterate over each enabled child node of ECIA
* Enable means property status = "okay"
*/
DT_FOREACH_CHILD_STATUS_OKAY(DT_NODELABEL(ecia), GIRQ_XEC_DEVICE)
/* n = GIRQ node id */
#define XEC_GIRQ_HANDLE(n) \
.girq_node_handles[DT_PROP(n, girq_id)] = (DEVICE_DT_GET(n)),
static const struct xec_ecia_config xec_config_ecia = {
.ecia_base = DT_REG_ADDR(DT_NODELABEL(ecia)),
.clk_ctrl = {
.pcr_info = ECIA_XEC_PCR_INFO,
},
DT_FOREACH_CHILD_STATUS_OKAY(DT_NODELABEL(ecia), XEC_GIRQ_HANDLE)
};
DEVICE_DT_DEFINE(DT_NODELABEL(ecia), xec_ecia_init,
NULL, NULL, &xec_config_ecia,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
NULL);
/* look up GIRQ node handle from ECIA configuration */
static const struct device *get_girq_dev(int girq_num)
{
if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) {
return NULL;
}
/* safe to convert to zero based index */
girq_num -= MCHP_FIRST_GIRQ;
return xec_config_ecia.girq_node_handles[girq_num];
}