218 lines
7.2 KiB
C
218 lines
7.2 KiB
C
/* sha256.c - TinyCrypt SHA-256 crypto hash algorithm implementation */
|
|
|
|
/*
|
|
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <tinycrypt/sha256.h>
|
|
#include <tinycrypt/constants.h>
|
|
#include <tinycrypt/utils.h>
|
|
|
|
static void compress(uint32_t *iv, const uint8_t *data);
|
|
|
|
int32_t tc_sha256_init(TCSha256State_t s)
|
|
{
|
|
/* input sanity check: */
|
|
if (s == (TCSha256State_t) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
/*
|
|
* Setting the initial state values.
|
|
* These values correspond to the first 32 bits of the fractional parts
|
|
* of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17
|
|
* and 19.
|
|
*/
|
|
_set((uint8_t *) s, 0x00, sizeof(*s));
|
|
s->iv[0] = 0x6a09e667;
|
|
s->iv[1] = 0xbb67ae85;
|
|
s->iv[2] = 0x3c6ef372;
|
|
s->iv[3] = 0xa54ff53a;
|
|
s->iv[4] = 0x510e527f;
|
|
s->iv[5] = 0x9b05688c;
|
|
s->iv[6] = 0x1f83d9ab;
|
|
s->iv[7] = 0x5be0cd19;
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
int32_t tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen)
|
|
{
|
|
/* input sanity check: */
|
|
if (s == (TCSha256State_t) 0 ||
|
|
data == (void *) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
} else if (datalen == 0) {
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
while (datalen-- > 0) {
|
|
s->leftover[s->leftover_offset++] = *(data++);
|
|
if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) {
|
|
compress(s->iv, s->leftover);
|
|
s->leftover_offset = 0;
|
|
s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3);
|
|
}
|
|
}
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
int32_t tc_sha256_final(uint8_t *digest, TCSha256State_t s)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* input sanity check: */
|
|
if (digest == (uint8_t *) 0 ||
|
|
s == (TCSha256State_t) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
s->bits_hashed += (s->leftover_offset << 3);
|
|
|
|
s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */
|
|
if (s->leftover_offset > (sizeof(s->leftover) - 8)) {
|
|
/* there is not room for all the padding in this block */
|
|
_set(s->leftover + s->leftover_offset, 0x00,
|
|
sizeof(s->leftover) - s->leftover_offset);
|
|
compress(s->iv, s->leftover);
|
|
s->leftover_offset = 0;
|
|
}
|
|
|
|
/* add the padding and the length in big-Endian format */
|
|
_set(s->leftover + s->leftover_offset, 0x00,
|
|
sizeof(s->leftover) - 8 - s->leftover_offset);
|
|
s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed);
|
|
s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8);
|
|
s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16);
|
|
s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24);
|
|
s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32);
|
|
s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40);
|
|
s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48);
|
|
s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56);
|
|
|
|
/* hash the padding and length */
|
|
compress(s->iv, s->leftover);
|
|
|
|
/* copy the iv out to digest */
|
|
for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) {
|
|
uint32_t t = *((uint32_t *) &s->iv[i]);
|
|
*digest++ = (uint8_t)(t >> 24);
|
|
*digest++ = (uint8_t)(t >> 16);
|
|
*digest++ = (uint8_t)(t >> 8);
|
|
*digest++ = (uint8_t)(t);
|
|
}
|
|
|
|
/* destroy the current state */
|
|
_set(s, 0, sizeof(*s));
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Initializing SHA-256 Hash constant words K.
|
|
* These values correspond to the first 32 bits of the fractional parts of the
|
|
* cube roots of the first 64 primes between 2 and 311.
|
|
*/
|
|
static const uint32_t k256[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
|
|
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
|
|
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
|
|
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
|
|
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
|
|
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
static inline uint32_t ROTR(uint32_t a, uint32_t n)
|
|
{
|
|
return (((a) >> n) | ((a) << (32 - n)));
|
|
}
|
|
|
|
#define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22))
|
|
#define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25))
|
|
#define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3))
|
|
#define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10))
|
|
|
|
#define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c)))
|
|
#define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)))
|
|
|
|
static inline uint32_t BigEndian(const uint8_t **c)
|
|
{
|
|
uint32_t n = 0;
|
|
|
|
n = (((uint32_t)(*((*c)++))) << 24);
|
|
n |= ((uint32_t)(*((*c)++)) << 16);
|
|
n |= ((uint32_t)(*((*c)++)) << 8);
|
|
n |= ((uint32_t)(*((*c)++)));
|
|
return n;
|
|
}
|
|
|
|
static void compress(uint32_t *iv, const uint8_t *data)
|
|
{
|
|
uint32_t a, b, c, d, e, f, g, h;
|
|
uint32_t s0, s1;
|
|
uint32_t t1, t2;
|
|
uint32_t work_space[16];
|
|
uint32_t n;
|
|
uint32_t i;
|
|
|
|
a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3];
|
|
e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7];
|
|
|
|
for (i = 0; i < 16; ++i) {
|
|
n = BigEndian(&data);
|
|
t1 = work_space[i] = n;
|
|
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
|
|
t2 = Sigma0(a) + Maj(a, b, c);
|
|
h = g; g = f; f = e; e = d + t1;
|
|
d = c; c = b; b = a; a = t1 + t2;
|
|
}
|
|
|
|
for ( ; i < 64; ++i) {
|
|
s0 = work_space[(i+1)&0x0f];
|
|
s0 = sigma0(s0);
|
|
s1 = work_space[(i+14)&0x0f];
|
|
s1 = sigma1(s1);
|
|
|
|
t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf];
|
|
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
|
|
t2 = Sigma0(a) + Maj(a, b, c);
|
|
h = g; g = f; f = e; e = d + t1;
|
|
d = c; c = b; b = a; a = t1 + t2;
|
|
}
|
|
|
|
iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d;
|
|
iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h;
|
|
}
|