zephyr/drivers/serial/uart_k20.c

595 lines
14 KiB
C

/*
* Copyright (c) 2013-2015 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @brief UART driver for the Freescale K20 Family of microprocessors.
*
* Before individual UART port can be used, uart_k20_port_init() has to be
* called to setup the port.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <stdint.h>
#include <board.h>
#include <init.h>
#include <uart.h>
#include <toolchain.h>
#include <sections.h>
#include "uart_k20.h"
#include "uart_k20_priv.h"
/* convenience defines */
#define DEV_CFG(dev) \
((struct uart_device_config * const)(dev)->config->config_info)
#define DEV_DATA(dev) \
((struct uart_k20_dev_data_t * const)(dev)->driver_data)
#define UART_STRUCT(dev) \
((volatile struct K20_UART *)(DEV_CFG(dev))->base)
/* Device data structure */
struct uart_k20_dev_data_t {
uint32_t baud_rate; /* Baud rate */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_t cb; /**< Callback function pointer */
#endif
};
static struct uart_driver_api uart_k20_driver_api;
/**
* @brief Initialize UART channel
*
* This routine is called to reset the chip in a quiescent state.
* It is assumed that this function is called only once per UART.
*
* @param dev UART device struct
*
* @return 0
*/
static int uart_k20_init(struct device *dev)
{
int old_level; /* old interrupt lock level */
union C1 c1; /* UART C1 register value */
union C2 c2; /* UART C2 register value */
volatile struct K20_UART *uart = UART_STRUCT(dev);
struct uart_device_config * const dev_cfg = DEV_CFG(dev);
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
/* disable interrupts */
old_level = irq_lock();
_uart_k20_baud_rate_set(uart, dev_cfg->sys_clk_freq,
dev_data->baud_rate);
/* 1 start bit, 8 data bits, no parity, 1 stop bit */
c1.value = 0;
uart->c1 = c1;
/* enable Rx and Tx with interrupts disabled */
c2.value = 0;
c2.field.rx_enable = 1;
c2.field.tx_enable = 1;
uart->c2 = c2;
/* restore interrupt state */
irq_unlock(old_level);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
dev_cfg->irq_config_func(dev);
#endif
return 0;
}
/**
* @brief Poll the device for input.
*
* @param dev UART device struct
* @param c Pointer to character
*
* @return 0 if a character arrived, -1 if the input buffer if empty.
*/
static int uart_k20_poll_in(struct device *dev, unsigned char *c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
if (uart->s1.field.rx_data_full == 0)
return (-1);
/* got a character */
*c = uart->d;
return 0;
}
/**
* @brief Output a character in polled mode.
*
* Checks if the transmitter is empty. If empty, a character is written to
* the data register.
*
* If the hardware flow control is enabled then the handshake signal CTS has to
* be asserted in order to send a character.
*
* @param dev UART device struct
* @param c Character to send
*
* @return sent character
*/
static unsigned char uart_k20_poll_out(struct device *dev,
unsigned char c)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
/* wait for transmitter to ready to accept a character */
while (uart->s1.field.tx_data_empty == 0)
;
uart->d = c;
return c;
}
#if CONFIG_UART_INTERRUPT_DRIVEN
/**
* @brief Fill FIFO with data
*
* @param dev UART device struct
* @param tx_data Data to transmit
* @param len Number of bytes to send
*
* @return number of bytes sent
*/
static int uart_k20_fifo_fill(struct device *dev, const uint8_t *tx_data,
int len)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_tx = 0;
while ((len - num_tx > 0) && (uart->s1.field.tx_data_empty == 1)) {
uart->d = tx_data[num_tx++];
}
return num_tx;
}
/**
* @brief Read data from FIFO
*
* @param dev UART device struct
* @param rx_data Pointer to data container
* @param size Container size in bytes
*
* @return number of bytes read
*/
static int uart_k20_fifo_read(struct device *dev, uint8_t *rx_data,
const int size)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uint8_t num_rx = 0;
while ((size - num_rx > 0) && (uart->s1.field.rx_data_full != 0)) {
rx_data[num_rx++] = uart->d;
}
return num_rx;
}
/**
* @brief Enable TX interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_tx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 1;
}
/**
* @brief Disable TX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_tx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.tx_int_dma_tx_en = 0;
}
/**
* @brief Check if Tx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_tx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.tx_int_dma_tx_en == 0) ?
0 : uart->s1.field.tx_data_empty;
}
/**
* @brief Enable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_rx_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 1;
}
/**
* @brief Disable RX interrupt in IER
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_rx_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
uart->c2.field.rx_full_int_dma_tx_en = 0;
}
/**
* @brief Check if Rx IRQ has been raised
*
* @param dev UART device struct
*
* @return 1 if an IRQ is ready, 0 otherwise
*/
static int uart_k20_irq_rx_ready(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
return (uart->c2.field.rx_full_int_dma_tx_en == 0) ?
0 : uart->s1.field.rx_data_full;
}
/**
* @brief Enable error interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_err_enable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 1;
c3.field.frame_err_int_en = 1;
c3.field.noise_err_int_en = 1;
c3.field.overrun_err_int_en = 1;
uart->c3 = c3;
}
/**
* @brief Disable error interrupt
*
* @param dev UART device struct
*
* @return N/A
*/
static void uart_k20_irq_err_disable(struct device *dev)
{
volatile struct K20_UART *uart = UART_STRUCT(dev);
union C3 c3 = uart->c3;
c3.field.parity_err_int_en = 0;
c3.field.frame_err_int_en = 0;
c3.field.noise_err_int_en = 0;
c3.field.overrun_err_int_en = 0;
uart->c3 = c3;
}
/**
* @brief Check if Tx or Rx IRQ is pending
*
* @param dev UART device struct
*
* @return 1 if a Tx or Rx IRQ is pending, 0 otherwise
*/
static int uart_k20_irq_is_pending(struct device *dev)
{
return uart_k20_irq_tx_ready(dev) || uart_k20_irq_rx_ready(dev);
}
/**
* @brief Update IRQ status
*
* @param dev UART device struct
*
* @return always 1
*/
static int uart_k20_irq_update(struct device *dev)
{
return 1;
}
/**
* @brief Set the callback function pointer for IRQ.
*
* @param dev UART device struct
* @param cb Callback function pointer.
*
* @return N/A
*/
static void uart_k20_irq_callback_set(struct device *dev,
uart_irq_callback_t cb)
{
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
dev_data->cb = cb;
}
/**
* @brief Interrupt service routine.
*
* This simply calls the callback function, if one exists.
*
* @param arg Argument to ISR.
*
* @return N/A
*/
void uart_k20_isr(void *arg)
{
struct device *dev = arg;
struct uart_k20_dev_data_t * const dev_data = DEV_DATA(dev);
if (dev_data->cb) {
dev_data->cb(dev);
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static struct uart_driver_api uart_k20_driver_api = {
.poll_in = uart_k20_poll_in,
.poll_out = uart_k20_poll_out,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_k20_fifo_fill,
.fifo_read = uart_k20_fifo_read,
.irq_tx_enable = uart_k20_irq_tx_enable,
.irq_tx_disable = uart_k20_irq_tx_disable,
.irq_tx_ready = uart_k20_irq_tx_ready,
.irq_rx_enable = uart_k20_irq_rx_enable,
.irq_rx_disable = uart_k20_irq_rx_disable,
.irq_rx_ready = uart_k20_irq_rx_ready,
.irq_err_enable = uart_k20_irq_err_enable,
.irq_err_disable = uart_k20_irq_err_disable,
.irq_is_pending = uart_k20_irq_is_pending,
.irq_update = uart_k20_irq_update,
.irq_callback_set = uart_k20_irq_callback_set,
#endif
};
#ifdef CONFIG_UART_K20_PORT_0
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_0(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_0 = {
.base = (uint8_t *)UART_K20_PORT_0_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_0,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_0 = {
.baud_rate = CONFIG_UART_K20_PORT_0_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_k20_0, CONFIG_UART_K20_PORT_0_NAME, &uart_k20_init,
&uart_k20_dev_data_0, &uart_k20_dev_cfg_0,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_k20_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_0(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_0_IRQ,
CONFIG_UART_K20_PORT_0_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_0),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_0_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_0 */
#ifdef CONFIG_UART_K20_PORT_1
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_1(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_1 = {
.base = (uint8_t *)UART_K20_PORT_1_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_1,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_1 = {
.baud_rate = CONFIG_UART_K20_PORT_1_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_k20_1, CONFIG_UART_K20_PORT_1_NAME, &uart_k20_init,
&uart_k20_dev_data_1, &uart_k20_dev_cfg_1,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_k20_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_1(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_1_IRQ,
CONFIG_UART_K20_PORT_1_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_1),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_1_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_1 */
#ifdef CONFIG_UART_K20_PORT_2
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_2(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_2 = {
.base = (uint8_t *)UART_K20_PORT_2_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_2,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_2 = {
.baud_rate = CONFIG_UART_K20_PORT_2_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_k20_2, CONFIG_UART_K20_PORT_2_NAME, &uart_k20_init,
&uart_k20_dev_data_2, &uart_k20_dev_cfg_2,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_k20_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_2(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_2_IRQ,
CONFIG_UART_K20_PORT_2_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_2),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_2_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_2 */
#ifdef CONFIG_UART_K20_PORT_3
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_3(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_3 = {
.base = (uint8_t *)UART_K20_PORT_3_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_3,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_3 = {
.baud_rate = CONFIG_UART_K20_PORT_3_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_k20_3, CONFIG_UART_K20_PORT_3_NAME, &uart_k20_init,
&uart_k20_dev_data_3, &uart_k20_dev_cfg_3,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_k20_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_3(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_3_IRQ,
CONFIG_UART_K20_PORT_3_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_3),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_3_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_3 */
#ifdef CONFIG_UART_K20_PORT_4
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_4(struct device *port);
#endif
static struct uart_device_config uart_k20_dev_cfg_4 = {
.base = (uint8_t *)UART_K20_PORT_4_BASE_ADDR,
.sys_clk_freq = UART_K20_CLK_FREQ,
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.irq_config_func = irq_config_func_4,
#endif
};
static struct uart_k20_dev_data_t uart_k20_dev_data_4 = {
.baud_rate = CONFIG_UART_K20_PORT_4_BAUD_RATE,
};
DEVICE_AND_API_INIT(uart_k20_4, CONFIG_UART_K20_PORT_4_NAME, &uart_k20_init,
&uart_k20_dev_data_4, &uart_k20_dev_cfg_4,
PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&uart_k20_driver_api);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static void irq_config_func_4(struct device *dev)
{
IRQ_CONNECT(UART_K20_PORT_4_IRQ,
CONFIG_UART_K20_PORT_4_IRQ_PRI,
uart_k20_isr, DEVICE_GET(uart_k20_4),
UART_IRQ_FLAGS);
irq_enable(UART_K20_PORT_4_IRQ);
}
#endif
#endif /* CONFIG_UART_K20_PORT_4 */