zephyr/drivers/usb/device/usb_dc_nrfx.c

1564 lines
33 KiB
C

/*
* Copyright (c) 2018, Nordic Semiconductor ASA
* Copyright (c) 2018 Sundar Subramaniyan <sundar.subramaniyan@gmail.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file usb_dc_nrfx.c
* @brief Nordic USB device controller driver
*
* The driver implements the interface between the USBD peripheral
* driver from nrfx package and the operating system.
*/
#include <soc.h>
#include <string.h>
#include <stdio.h>
#include <kernel.h>
#include <usb/usb_dc.h>
#include <usb/usb_device.h>
#include <clock_control.h>
#include <hal/nrf_power.h>
#include <drivers/clock_control/nrf5_clock_control.h>
#include <nrfx_usbd.h>
#define LOG_LEVEL CONFIG_USB_DRIVER_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(usb_nrfx);
#define USB_BMREQUEST_SETADDRESS 0x05
#define USB_BMREQUESTTYPE_POS 7uL
#define USB_BMREQUESTTYPE_MASK (1uL << USB_BMREQUESTTYPE_POS)
#define USB_BMREQUESTTYPE_HOSTTODEVICE_MASK 0uL
#define USB_BMREQUESTTYPE_DEVICETOHOST_MASK (1uL << USB_BMREQUESTTYPE_POS)
#define MAX_EP_BUF_SZ 64UL
#define MAX_ISO_EP_BUF_SZ 1024UL
#define USBD_EPSTATUS_EPIN_MASK (0x1FF << USBD_EPSTATUS_EPIN0_Pos)
#define USBD_EPSTATUS_EPOUT_MASK (0x1FF << USBD_EPSTATUS_EPOUT0_Pos)
#define USBD_EPDATASTATUS_EPIN_MASK (0x7F << USBD_EPDATASTATUS_EPIN1_Pos)
#define USBD_EPDATASTATUS_EPOUT_MASK (0x7F << USBD_EPDATASTATUS_EPOUT1_Pos)
/** USB Work flags */
#define NRF_USB_STATE_CHANGE 0
#define NRF_USB_STATUS_CHANGE 1
/**
* @brief nRF USBD peripheral states
*/
enum usbd_periph_state {
USBD_DETACHED,
USBD_ATTACHED,
USBD_POWERED,
USBD_SUSPENDED,
USBD_DEFAULT,
USBD_ADDRESS_SET,
USBD_CONFIGURED,
};
/**
* @brief Endpoint event types.
*/
enum ep_event_type {
EP_EVT_SETUP_RECV,
EP_EVT_RECV_REQ,
EP_EVT_RECV_COMPLETE,
EP_EVT_WRITE_COMPLETE,
};
/**
* @brief Endpoint configuration.
*
* @param cb Endpoint callback.
* @param max_sz Max packet size supported by endpoint.
* @param en Enable/Disable flag.
* @param addr Endpoint address.
* @param type Endpoint type.
*/
struct nrf_usbd_ep_cfg {
usb_dc_ep_callback cb;
u32_t max_sz;
bool en;
u8_t addr;
enum usb_dc_ep_type type;
};
/**
* @brief Endpoint buffer
*
* @param len Remaining length to be read/written.
* @param block Mempool block, for freeing up buffer after use.
* @param data Pointer to the data buffer for the endpoint.
* @param curr Pointer to the current offset in the endpoint buffer.
*/
struct nrf_usbd_ep_buf {
u32_t len;
struct k_mem_block block;
u8_t *data;
u8_t *curr;
};
/**
* @brief Endpoint context
*
* @param cfg Endpoint configuration
* @param buf Endpoint buffer
* @param read_complete A flag indicating that DMA read operation has been completed.
* @param read_pending A flag indicating that the Host has requested a data transfer.
*/
struct nrf_usbd_ep_ctx {
struct nrf_usbd_ep_cfg cfg;
struct nrf_usbd_ep_buf buf;
volatile bool read_complete;
volatile bool read_pending;
};
/**
* @brief Endpoint USB event
* Used by ISR to send events to work handler
*
* @param node Used by the kernel for FIFO management
* @param ep Endpoint context pointer that needs service
* @param evt Event that has occurred from the USBD peripheral
* @param block Mempool block pointer for freeing up after use
* @param misc_u Miscellaneous information passed as flags
*/
struct usbd_ep_event {
sys_snode_t node;
struct nrf_usbd_ep_ctx *ep;
enum ep_event_type evt;
struct k_mem_block block;
union {
u32_t flags;
u32_t frame_counter;
} misc_u;
};
/**
* @brief Fifo element pool
* Used for allocating fifo elements to pass from ISR to work handler
* TODO: The number of FIFO elements is an arbitrary number now but it should
* be derived from the theoretical number of backlog events possible depending
* on the number of endpoints configured.
*/
#define FIFO_ELEM_MIN_SZ sizeof(struct usbd_ep_event)
#define FIFO_ELEM_MAX_SZ sizeof(struct usbd_ep_event)
#define FIFO_ELEM_COUNT 32
#define FIFO_ELEM_ALIGN sizeof(unsigned int)
K_MEM_POOL_DEFINE(fifo_elem_pool, FIFO_ELEM_MIN_SZ, FIFO_ELEM_MAX_SZ,
FIFO_ELEM_COUNT, FIFO_ELEM_ALIGN);
/**
* @brief Endpoint buffer pool
* Used for allocating buffers for the endpoints' data transfer
* Max pool size possible: 3072 Bytes (16 EP * 64B + 2 ISO * 1024B)
*/
/** Number of IN Endpoints configured (including control) */
#define CFG_EPIN_CNT (CONFIG_USBD_NRF_NUM_IN_EP + \
CONFIG_USBD_NRF_NUM_BIDIR_EP)
/** Number of OUT Endpoints configured (including control) */
#define CFG_EPOUT_CNT (CONFIG_USBD_NRF_NUM_OUT_EP + \
CONFIG_USBD_NRF_NUM_BIDIR_EP)
/** Number of ISO IN Endpoints */
#define CFG_EP_ISOIN_CNT CONFIG_USBD_NRF_NUM_ISOIN_EP
/** Number of ISO OUT Endpoints */
#define CFG_EP_ISOOUT_CNT CONFIG_USBD_NRF_NUM_ISOOUT_EP
/** ISO endpoint index */
#define EP_ISOIN_INDEX CFG_EPIN_CNT
#define EP_ISOOUT_INDEX (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + CFG_EPOUT_CNT)
/** Minimum endpoint buffer size */
#define EP_BUF_MIN_SZ MAX_EP_BUF_SZ
/** Maximum endpoint buffer size */
#if (CFG_EP_ISOIN_CNT || CFG_EP_ISOOUT_CNT)
#define EP_BUF_MAX_SZ MAX_ISO_EP_BUF_SZ
#else
#define EP_BUF_MAX_SZ MAX_EP_BUF_SZ
#endif
/** Total endpoints configured */
#define CFG_EP_CNT (CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + \
CFG_EPOUT_CNT + CFG_EP_ISOOUT_CNT)
/** Total buffer size for all endpoints */
#define EP_BUF_TOTAL ((CFG_EPIN_CNT * MAX_EP_BUF_SZ) + \
(CFG_EPOUT_CNT * MAX_EP_BUF_SZ) + \
(CFG_EP_ISOIN_CNT * MAX_ISO_EP_BUF_SZ) + \
(CFG_EP_ISOOUT_CNT * MAX_ISO_EP_BUF_SZ))
/** Total number of maximum sized buffers needed */
#define EP_BUF_COUNT ((EP_BUF_TOTAL / EP_BUF_MAX_SZ) + \
((EP_BUF_TOTAL % EP_BUF_MAX_SZ) ? 1 : 0))
/** 4 Byte Buffer alignment required by hardware */
#define EP_BUF_ALIGN sizeof(unsigned int)
K_MEM_POOL_DEFINE(ep_buf_pool, EP_BUF_MIN_SZ, EP_BUF_MAX_SZ,
EP_BUF_COUNT, EP_BUF_ALIGN);
/**
* @brief USBD private structure
*
* @param status_cb Status callback for USB DC notifications
* @param attached USBD Attached flag
* @param ready USBD Ready flag set after pullup
* @param state USBD state
* @param status_code Device Status code
* @param flags Flags used in work context
* @param usb_work USBD work item
* @param work_queue FIFO used for queuing up events from ISR
* @param dma_in_use Semaphore to restrict access to DMA one at a time
* @param ep_ctx Endpoint contexts
*/
struct nrf_usbd_ctx {
usb_dc_status_callback status_cb;
bool attached;
bool ready;
enum usbd_periph_state state;
enum usb_dc_status_code status_code;
u32_t flags;
struct k_work usb_work;
struct k_fifo work_queue;
struct k_sem dma_in_use;
struct nrf_usbd_ep_ctx ep_ctx[CFG_EP_CNT];
};
static struct nrf_usbd_ctx usbd_ctx;
static inline struct nrf_usbd_ctx *get_usbd_ctx(void)
{
return &usbd_ctx;
}
static inline nrfx_usbd_ep_t ep_addr_to_nrfx(uint8_t ep)
{
return (nrfx_usbd_ep_t)ep;
}
static inline uint8_t nrfx_addr_to_ep(nrfx_usbd_ep_t ep)
{
return (uint8_t)ep;
}
static inline bool ep_is_valid(const u8_t ep)
{
u8_t ep_num = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep)) {
if (unlikely(NRF_USBD_EPISO_CHECK(ep))) {
if (CFG_EP_ISOIN_CNT == 0) {
return false;
}
} else {
if (ep_num >= CFG_EPIN_CNT) {
return false;
}
}
} else {
if (unlikely(NRF_USBD_EPISO_CHECK(ep))) {
if (CFG_EP_ISOOUT_CNT == 0) {
return false;
}
} else {
if (ep_num >= CFG_EPOUT_CNT) {
return false;
}
}
}
return true;
}
static struct nrf_usbd_ep_ctx *endpoint_ctx(const u8_t ep)
{
struct nrf_usbd_ctx *ctx;
u8_t ep_num;
if (!ep_is_valid(ep)) {
return NULL;
}
ctx = get_usbd_ctx();
ep_num = NRF_USBD_EP_NR_GET(ep);
if (NRF_USBD_EPIN_CHECK(ep)) {
if (unlikely(NRF_USBD_EPISO_CHECK(ep))) {
return &ctx->ep_ctx[EP_ISOIN_INDEX];
} else {
return &ctx->ep_ctx[ep_num];
}
} else {
if (unlikely(NRF_USBD_EPISO_CHECK(ep))) {
return &ctx->ep_ctx[EP_ISOOUT_INDEX];
} else {
return &ctx->ep_ctx[CFG_EPIN_CNT +
CFG_EP_ISOIN_CNT +
ep_num];
}
}
return NULL;
}
static struct nrf_usbd_ep_ctx *in_endpoint_ctx(const u8_t ep)
{
return endpoint_ctx(NRF_USBD_EPIN(ep));
}
static struct nrf_usbd_ep_ctx *out_endpoint_ctx(const u8_t ep)
{
return endpoint_ctx(NRF_USBD_EPOUT(ep));
}
/**
* @brief Schedule USBD event processing.
*
* Should be called after usbd_evt_put().
*/
static inline void usbd_work_schedule(void)
{
k_work_submit(&get_usbd_ctx()->usb_work);
}
/**
* @brief Update USB DC status code.
*
* @param status New status code.
*/
static inline void usbd_status_code_update(enum usb_dc_status_code status)
{
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
ctx->status_code = status;
ctx->flags |= BIT(NRF_USB_STATUS_CHANGE);
usbd_work_schedule();
}
/**
* @brief Allocate USBD event.
*
* This function should be called prior to usbd_evt_put().
*
* @returns Pointer to the allocated event or NULL if there was no space left.
*/
static inline struct usbd_ep_event *usbd_evt_alloc(void)
{
int ret;
struct usbd_ep_event *ev;
struct k_mem_block block;
ret = k_mem_pool_alloc(&fifo_elem_pool, &block,
sizeof(struct usbd_ep_event),
K_NO_WAIT);
if (ret < 0) {
LOG_DBG("USBD event alloc failed!");
__ASSERT_NO_MSG(0);
return NULL;
}
ev = (struct usbd_ep_event *)block.data;
ev->block = block;
ev->misc_u.flags = 0;
return ev;
}
/**
* @brief Free previously allocated USBD event.
*
* Should be called after usbd_evt_get().
*
* @param Pointer to the USBD event structure.
*/
static inline void usbd_evt_free(struct usbd_ep_event *ev)
{
k_mem_pool_free(&ev->block);
}
/**
* @brief Enqueue USBD event.
*
* @param Pointer to the previously allocated and filled event structure.
*/
static inline void usbd_evt_put(struct usbd_ep_event *ev)
{
k_fifo_put(&get_usbd_ctx()->work_queue, ev);
}
/**
* @brief Get next enqueued USBD event if present.
*/
static inline struct usbd_ep_event *usbd_evt_get(void)
{
return k_fifo_get(&get_usbd_ctx()->work_queue, K_NO_WAIT);
}
/**
* @brief Drop all enqueued events.
*/
static inline void usbd_evt_flush(void)
{
struct usbd_ep_event *ev;
do {
ev = usbd_evt_get();
if (ev) {
usbd_evt_free(ev);
}
} while (ev != NULL);
}
void usb_dc_nrfx_power_event_callback(nrf_power_event_t event)
{
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
switch (event) {
case NRF_POWER_EVENT_USBDETECTED:
ctx->state = USBD_ATTACHED;
break;
case NRF_POWER_EVENT_USBPWRRDY:
ctx->state = USBD_POWERED;
break;
case NRF_POWER_EVENT_USBREMOVED:
ctx->state = USBD_DETACHED;
break;
default:
LOG_DBG("Unknown USB power event");
return;
}
ctx->flags |= BIT(NRF_USB_STATE_CHANGE);
k_work_submit(&ctx->usb_work);
}
/**
* @brief Enable/Disable the HF clock
*
* Toggle the HF clock. It needs to be enabled for USBD data exchange
*
* @param on Set true to enable the HF clock, false to disable.
* @param blocking Set true to block wait till HF clock stabilizes.
*
* @return 0 on success, error number otherwise
*/
static int hf_clock_enable(bool on, bool blocking)
{
int ret = -ENODEV;
struct device *clock;
clock = device_get_binding(CONFIG_CLOCK_CONTROL_NRF5_M16SRC_DRV_NAME);
if (!clock) {
LOG_ERR("NRF HF Clock device not found!");
return ret;
}
if (on) {
ret = clock_control_on(clock, (void *)blocking);
} else {
ret = clock_control_off(clock, (void *)blocking);
}
if (ret && (blocking || (ret != -EINPROGRESS))) {
LOG_ERR("HF clock %s fail: %d",
on ? "start" : "stop", ret);
return ret;
}
LOG_DBG("HF clock %s success (%d)", on ? "start" : "stop", ret);
return ret;
}
static void usbd_enable_endpoints(struct nrf_usbd_ctx *ctx)
{
struct nrf_usbd_ep_ctx *ep_ctx;
int i;
for (i = 0; i < NRF_USBD_EPIN_CNT; i++) {
ep_ctx = in_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
if (ep_ctx->cfg.en) {
nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr));
}
}
for (i = 0; i < NRF_USBD_EPOUT_CNT; i++) {
ep_ctx = out_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
if (ep_ctx->cfg.en) {
nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep_ctx->cfg.addr));
}
}
}
static void usbd_handle_state_change(struct nrf_usbd_ctx *ctx)
{
switch (ctx->state) {
case USBD_ATTACHED:
LOG_DBG("USB detected");
nrfx_usbd_enable();
break;
case USBD_POWERED:
LOG_DBG("USB Powered");
ctx->status_code = USB_DC_CONNECTED;
ctx->flags |= BIT(NRF_USB_STATUS_CHANGE);
usbd_enable_endpoints(ctx);
nrfx_usbd_start(true);
ctx->ready = true;
break;
case USBD_DETACHED:
LOG_DBG("USB Removed");
ctx->ready = false;
nrfx_usbd_disable();
ctx->status_code = USB_DC_DISCONNECTED;
ctx->flags |= BIT(NRF_USB_STATUS_CHANGE);
break;
default:
break;
}
if (ctx->flags) {
k_work_submit(&ctx->usb_work);
}
}
static void usbd_handle_status_change(struct nrf_usbd_ctx *ctx)
{
if (ctx->status_cb) {
ctx->status_cb(ctx->status_code, NULL);
}
}
static inline void usbd_work_process_setup(struct nrf_usbd_ep_ctx *ep_ctx)
{
__ASSERT_NO_MSG(ep_ctx);
__ASSERT(ep_ctx->cfg.type == USB_DC_EP_CONTROL,
"Invalid event on CTRL EP.");
struct usb_setup_packet *usbd_setup;
/* SETUP packets are handled by USBD hardware.
* For compatibility with the USB stack,
* SETUP packet must be reassembled.
*/
usbd_setup = (struct usb_setup_packet *)ep_ctx->buf.data;
memset(usbd_setup, 0, sizeof(struct usb_setup_packet));
usbd_setup->bmRequestType = nrf_usbd_setup_bmrequesttype_get();
usbd_setup->bRequest = nrf_usbd_setup_brequest_get();
usbd_setup->wValue = nrf_usbd_setup_wvalue_get();
usbd_setup->wIndex = nrf_usbd_setup_windex_get();
usbd_setup->wLength = nrf_usbd_setup_wlength_get();
ep_ctx->buf.len = sizeof(struct usb_setup_packet);
LOG_DBG("SETUP: r:%d rt:%d v:%d i:%d l:%d",
(u32_t)usbd_setup->bRequest,
(u32_t)usbd_setup->bmRequestType,
(u32_t)usbd_setup->wValue,
(u32_t)usbd_setup->wIndex,
(u32_t)usbd_setup->wLength);
/* Inform the stack. */
ep_ctx->cfg.cb(ep_ctx->cfg.addr, USB_DC_EP_SETUP);
if (((usbd_setup->bmRequestType & USB_BMREQUESTTYPE_MASK)
== USB_BMREQUESTTYPE_HOSTTODEVICE_MASK)
&& (usbd_setup->wLength)) {
nrfx_usbd_setup_data_clear();
}
}
static inline void usbd_work_process_recvreq(struct nrf_usbd_ctx *ctx,
struct nrf_usbd_ep_ctx *ep_ctx)
{
if (!ep_ctx->read_pending) {
return;
}
if (!ep_ctx->read_complete) {
return;
}
ep_ctx->read_pending = false;
ep_ctx->read_complete = false;
k_sem_take(&ctx->dma_in_use, K_FOREVER);
NRFX_USBD_TRANSFER_OUT(transfer, ep_ctx->buf.data,
ep_ctx->cfg.max_sz);
nrfx_err_t err = nrfx_usbd_ep_transfer(
ep_addr_to_nrfx(ep_ctx->cfg.addr), &transfer);
if (err != NRFX_SUCCESS) {
LOG_ERR("nRF USBD transfer error (OUT): %d.", err);
k_sem_give(&ctx->dma_in_use);
}
}
/* Work handler */
static void usbd_work_handler(struct k_work *item)
{
struct nrf_usbd_ctx *ctx;
struct usbd_ep_event *ev;
ctx = CONTAINER_OF(item, struct nrf_usbd_ctx, usb_work);
if (ctx->flags) {
if (ctx->flags & BIT(NRF_USB_STATE_CHANGE)) {
usbd_handle_state_change(ctx);
ctx->flags &= ~BIT(NRF_USB_STATE_CHANGE);
}
if (ctx->flags & BIT(NRF_USB_STATUS_CHANGE)) {
usbd_handle_status_change(ctx);
ctx->flags &= ~BIT(NRF_USB_STATUS_CHANGE);
}
}
while ((ev = usbd_evt_get()) != NULL) {
if (!ctx->attached) {
LOG_ERR("USBD event dropped (not attached): %d.",
(uint32_t)ev->evt);
} else {
struct nrf_usbd_ep_ctx *ep_ctx = ev->ep;
switch (ev->evt) {
case EP_EVT_SETUP_RECV: {
usbd_work_process_setup(ep_ctx);
break;
}
case EP_EVT_RECV_REQ: {
usbd_work_process_recvreq(ctx, ep_ctx);
break;
}
case EP_EVT_RECV_COMPLETE:
ep_ctx->cfg.cb(ep_ctx->cfg.addr,
USB_DC_EP_DATA_OUT);
break;
case EP_EVT_WRITE_COMPLETE:
if (ep_ctx->cfg.type == USB_DC_EP_CONTROL) {
k_sem_take(&ctx->dma_in_use, K_FOREVER);
nrfx_usbd_setup_clear();
k_sem_give(&ctx->dma_in_use);
}
ep_ctx->cfg.cb(ep_ctx->cfg.addr,
USB_DC_EP_DATA_IN);
break;
default:
break;
}
}
usbd_evt_free(ev);
}
}
static inline bool dev_attached(void)
{
return get_usbd_ctx()->attached;
}
static inline bool dev_ready(void)
{
return get_usbd_ctx()->ready;
}
static void endpoint_ctx_init(void)
{
struct nrf_usbd_ep_ctx *ep_ctx;
int ret;
u32_t i;
for (i = 0; i < CFG_EPIN_CNT; i++) {
ep_ctx = in_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
ret = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block,
MAX_EP_BUF_SZ, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("EP buffer alloc failed for EPIN%d", i);
__ASSERT_NO_MSG(0);
}
ep_ctx->buf.data = ep_ctx->buf.block.data;
ep_ctx->buf.curr = ep_ctx->buf.data;
ep_ctx->read_complete = true;
ep_ctx->read_pending = false;
}
for (i = 0; i < CFG_EPOUT_CNT; i++) {
ep_ctx = out_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
ret = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block,
MAX_EP_BUF_SZ, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("EP buffer alloc failed for EPOUT%d", i);
__ASSERT_NO_MSG(0);
}
ep_ctx->buf.data = ep_ctx->buf.block.data;
ep_ctx->buf.curr = ep_ctx->buf.data;
ep_ctx->read_complete = true;
ep_ctx->read_pending = false;
}
if (CFG_EP_ISOIN_CNT) {
ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8));
__ASSERT_NO_MSG(ep_ctx);
ret = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block,
MAX_ISO_EP_BUF_SZ, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("EP buffer alloc failed for ISOIN");
__ASSERT_NO_MSG(0);
}
ep_ctx->buf.data = ep_ctx->buf.block.data;
ep_ctx->buf.curr = ep_ctx->buf.data;
ep_ctx->read_complete = true;
ep_ctx->read_pending = false;
}
if (CFG_EP_ISOOUT_CNT) {
ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8));
__ASSERT_NO_MSG(ep_ctx);
ret = k_mem_pool_alloc(&ep_buf_pool, &ep_ctx->buf.block,
MAX_ISO_EP_BUF_SZ, K_NO_WAIT);
if (ret < 0) {
LOG_ERR("EP buffer alloc failed for ISOOUT");
__ASSERT_NO_MSG(0);
}
ep_ctx->buf.data = ep_ctx->buf.block.data;
ep_ctx->buf.curr = ep_ctx->buf.data;
ep_ctx->read_complete = true;
ep_ctx->read_pending = false;
}
}
static void endpoint_ctx_deinit(void)
{
struct nrf_usbd_ep_ctx *ep_ctx;
u32_t i;
for (i = 0; i < CFG_EPIN_CNT; i++) {
ep_ctx = in_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
k_mem_pool_free(&ep_ctx->buf.block);
memset(ep_ctx, 0, sizeof(*ep_ctx));
}
for (i = 0; i < CFG_EPOUT_CNT; i++) {
ep_ctx = out_endpoint_ctx(i);
__ASSERT_NO_MSG(ep_ctx);
k_mem_pool_free(&ep_ctx->buf.block);
memset(ep_ctx, 0, sizeof(*ep_ctx));
}
if (CFG_EP_ISOIN_CNT) {
ep_ctx = in_endpoint_ctx(NRF_USBD_EPIN(8));
__ASSERT_NO_MSG(ep_ctx);
k_mem_pool_free(&ep_ctx->buf.block);
memset(ep_ctx, 0, sizeof(*ep_ctx));
}
if (CFG_EP_ISOOUT_CNT) {
ep_ctx = out_endpoint_ctx(NRF_USBD_EPOUT(8));
__ASSERT_NO_MSG(ep_ctx);
k_mem_pool_free(&ep_ctx->buf.block);
memset(ep_ctx, 0, sizeof(*ep_ctx));
}
}
static void usbd_event_transfer_ctrl(nrfx_usbd_evt_t const *const p_event)
{
struct nrf_usbd_ep_ctx *ep_ctx =
endpoint_ctx(p_event->data.eptransfer.ep);
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) {
switch (p_event->data.eptransfer.status) {
case NRFX_USBD_EP_OK: {
struct usbd_ep_event *ev = usbd_evt_alloc();
ev->ep = ep_ctx;
ev->evt = EP_EVT_WRITE_COMPLETE;
k_sem_give(&ctx->dma_in_use);
LOG_DBG("ctrl write complete");
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
default: {
LOG_ERR(
"Unexpected event (nrfx_usbd): %d, ep %d",
p_event->data.eptransfer.status,
p_event->data.eptransfer.ep);
k_sem_give(&ctx->dma_in_use);
}
break;
}
} else {
switch (p_event->data.eptransfer.status) {
case NRFX_USBD_EP_WAITING: {
struct usbd_ep_event *ev = usbd_evt_alloc();
LOG_DBG("ctrl read request");
ep_ctx->read_pending = true;
ev->ep = ep_ctx;
ev->evt = EP_EVT_RECV_REQ;
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
case NRFX_USBD_EP_OK: {
struct usbd_ep_event *ev = usbd_evt_alloc();
nrfx_err_t err_code;
ev->ep = ep_ctx;
ev->evt = EP_EVT_RECV_COMPLETE;
err_code = nrfx_usbd_ep_status_get(
p_event->data.eptransfer.ep, &ep_ctx->buf.len);
if ((err_code != NRFX_SUCCESS) &&
(err_code != (nrfx_err_t)NRFX_USBD_EP_OK)) {
LOG_ERR("_ep_status_get failed! Code: %d.",
err_code);
__ASSERT_NO_MSG(0);
}
LOG_DBG("ctrl read done: %d", ep_ctx->buf.len);
k_sem_give(&ctx->dma_in_use);
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
default: {
LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d",
p_event->data.eptransfer.status,
p_event->data.eptransfer.ep);
k_sem_give(&ctx->dma_in_use);
}
break;
}
}
}
static void usbd_event_transfer_data(nrfx_usbd_evt_t const *const p_event)
{
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
struct nrf_usbd_ep_ctx *ep_ctx =
endpoint_ctx(p_event->data.eptransfer.ep);
if (NRF_USBD_EPIN_CHECK(p_event->data.eptransfer.ep)) {
switch (p_event->data.eptransfer.status) {
case NRFX_USBD_EP_OK: {
struct usbd_ep_event *ev = usbd_evt_alloc();
ev->ep = ep_ctx;
ev->evt = EP_EVT_WRITE_COMPLETE;
LOG_DBG("write complete, ep %d",
(u32_t)p_event->data.eptransfer.ep);
k_sem_give(&ctx->dma_in_use);
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
default: {
LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d",
p_event->data.eptransfer.status,
p_event->data.eptransfer.ep);
k_sem_give(&ctx->dma_in_use);
}
break;
}
} else {
switch (p_event->data.eptransfer.status) {
case NRFX_USBD_EP_WAITING: {
struct usbd_ep_event *ev = usbd_evt_alloc();
LOG_DBG("read request, ep %d",
(u32_t)p_event->data.eptransfer.ep);
ev->ep = ep_ctx;
ev->evt = EP_EVT_RECV_REQ;
usbd_evt_put(ev);
ep_ctx->read_pending = true;
usbd_work_schedule();
}
break;
case NRFX_USBD_EP_OK: {
struct usbd_ep_event *ev = usbd_evt_alloc();
ev->ep = ep_ctx;
ev->evt = EP_EVT_RECV_COMPLETE;
ep_ctx->buf.len = nrf_usbd_ep_amount_get(
p_event->data.eptransfer.ep);
LOG_DBG("read complete, ep %d, len %d",
(u32_t)p_event->data.eptransfer.ep,
ep_ctx->buf.len);
k_sem_give(&ctx->dma_in_use);
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
default: {
LOG_ERR("Unexpected event from nrfx_usbd: %d, ep %d",
p_event->data.eptransfer.status,
p_event->data.eptransfer.ep);
k_sem_give(&ctx->dma_in_use);
}
break;
}
}
}
/**
* @brief nRFx USBD driver event handler function.
*/
static void usbd_event_handler(nrfx_usbd_evt_t const *const p_event)
{
struct nrf_usbd_ep_ctx *ep_ctx;
struct usbd_ep_event *ev;
switch (p_event->type) {
case NRFX_USBD_EVT_SUSPEND:
LOG_DBG("SUSPEND state detected.");
break;
case NRFX_USBD_EVT_RESUME:
LOG_DBG("RESUMING from suspend.");
break;
case NRFX_USBD_EVT_WUREQ:
LOG_DBG("RemoteWU initiated.");
break;
case NRFX_USBD_EVT_RESET:
LOG_DBG("USBD Reset.");
usbd_status_code_update(USB_DC_RESET);
break;
case NRFX_USBD_EVT_SOF:
break;
case NRFX_USBD_EVT_EPTRANSFER:
ep_ctx = endpoint_ctx(p_event->data.eptransfer.ep);
switch (ep_ctx->cfg.type) {
case USB_DC_EP_CONTROL:
usbd_event_transfer_ctrl(p_event);
break;
case USB_DC_EP_BULK:
case USB_DC_EP_INTERRUPT:
usbd_event_transfer_data(p_event);
break;
case USB_DC_EP_ISOCHRONOUS:
usbd_event_transfer_data(p_event);
break;
default:
break;
}
break;
case NRFX_USBD_EVT_SETUP: {
nrfx_usbd_setup_t drv_setup;
nrfx_usbd_setup_get(&drv_setup);
if (drv_setup.bmRequest != USB_BMREQUEST_SETADDRESS) {
/* SetAddress is habdled by USBD hardware.
* No software action required.
*/
struct nrf_usbd_ep_ctx *ep_ctx =
endpoint_ctx(NRF_USBD_EPOUT(0));
ev = usbd_evt_alloc();
ev->ep = ep_ctx;
ev->evt = EP_EVT_SETUP_RECV;
usbd_evt_put(ev);
usbd_work_schedule();
}
break;
}
default:
break;
}
}
int usb_dc_attach(void)
{
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
nrfx_err_t err;
int ret;
if (ctx->attached) {
return 0;
}
k_work_init(&ctx->usb_work, usbd_work_handler);
k_fifo_init(&ctx->work_queue);
k_sem_init(&ctx->dma_in_use, 1, 1);
IRQ_CONNECT(CONFIG_USBD_NRF_IRQ,
CONFIG_USBD_NRF_IRQ_PRI,
nrfx_isr, nrfx_usbd_irq_handler, 0);
/* NOTE: Non-blocking HF clock enable can return -EINPROGRESS
* if HF clock start was already requested.
*/
ret = hf_clock_enable(true, false);
if (ret && ret != -EINPROGRESS) {
return ret;
}
err = nrfx_usbd_init(usbd_event_handler);
if (err != NRFX_SUCCESS) {
LOG_DBG("nRF USBD driver init failed. Code: %d.",
(u32_t)err);
return -EIO;
}
nrf5_power_usb_power_int_enable(true);
endpoint_ctx_init();
ctx->attached = true;
return 0;
}
int usb_dc_detach(void)
{
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
int ret;
ctx->flags = 0;
ctx->state = USBD_DETACHED;
ctx->status_code = USB_DC_UNKNOWN;
usbd_evt_flush();
k_sem_reset(&ctx->dma_in_use);
endpoint_ctx_deinit();
nrfx_usbd_disable();
nrfx_usbd_uninit();
ret = hf_clock_enable(false, false);
if (ret) {
return ret;
}
nrf5_power_usb_power_int_enable(false);
ctx->attached = false;
return ret;
}
int usb_dc_reset(void)
{
int ret;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
LOG_DBG("USBD Reset.");
ret = usb_dc_detach();
if (ret) {
return ret;
}
ret = usb_dc_attach();
if (ret) {
return ret;
}
return 0;
}
int usb_dc_set_address(const u8_t addr)
{
struct nrf_usbd_ctx *ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
/**
* Nothing to do here. The USBD HW already takes care of initiating
* STATUS stage. Just double check the address for sanity.
*/
__ASSERT(addr == (u8_t)NRF_USBD->USBADDR, "USB Address incorrect!");
ctx = get_usbd_ctx();
ctx->state = USBD_ADDRESS_SET;
LOG_DBG("Address set to: %d.", addr);
return 0;
}
int usb_dc_ep_check_cap(const struct usb_dc_ep_cfg_data *const ep_cfg)
{
u8_t ep_idx = NRF_USBD_EP_NR_GET(ep_cfg->ep_addr);
LOG_DBG("ep %x, mps %d, type %d", ep_cfg->ep_addr, ep_cfg->ep_mps,
ep_cfg->ep_type);
if ((ep_cfg->ep_type == USB_DC_EP_CONTROL) && ep_idx) {
LOG_ERR("invalid endpoint configuration");
return -1;
}
if (!NRF_USBD_EP_VALIDATE(ep_cfg->ep_addr)) {
LOG_ERR("invalid endpoint index/address");
return -1;
}
if ((ep_cfg->ep_type == USB_DC_EP_ISOCHRONOUS) &&
(!NRF_USBD_EPISO_CHECK(ep_cfg->ep_addr))) {
LOG_WRN("invalid endpoint type");
return -1;
}
return 0;
}
int usb_dc_ep_configure(const struct usb_dc_ep_cfg_data *const ep_cfg)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached()) {
return -ENODEV;
}
/**
* TODO:
* For ISO endpoints, application has to use EPIN/OUT 8
* but right now there's no standard way of knowing the
* ISOIN/ISOOUT endpoint number in advance to configure
* accordingly. So either this needs to be chosen in the
* menuconfig in application area or perhaps in device tree
* at compile time or introduce a new API to read the endpoint
* configuration at runtime before configuring them.
*/
ep_ctx = endpoint_ctx(ep_cfg->ep_addr);
if (!ep_ctx) {
return -EINVAL;
}
ep_ctx->cfg.addr = ep_cfg->ep_addr;
ep_ctx->cfg.type = ep_cfg->ep_type;
ep_ctx->cfg.max_sz = ep_cfg->ep_mps;
if ((ep_cfg->ep_mps & (ep_cfg->ep_mps - 1)) != 0) {
LOG_ERR("EP max packet size must be a power of 2.");
return -EINVAL;
}
nrfx_usbd_ep_max_packet_size_set(ep_addr_to_nrfx(ep_cfg->ep_addr),
ep_cfg->ep_mps);
return 0;
}
int usb_dc_ep_set_stall(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
switch (ep_ctx->cfg.type) {
case USB_DC_EP_CONTROL:
nrfx_usbd_setup_stall();
break;
case USB_DC_EP_BULK:
case USB_DC_EP_INTERRUPT:
nrfx_usbd_ep_stall(ep_addr_to_nrfx(ep));
break;
case USB_DC_EP_ISOCHRONOUS:
LOG_ERR("STALL unsupported on ISO endpoint.s");
return -EINVAL;
}
ep_ctx->buf.len = 0;
ep_ctx->buf.curr = ep_ctx->buf.data;
LOG_DBG("STALL on EP %d.", ep);
return 0;
}
int usb_dc_ep_clear_stall(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
nrfx_usbd_ep_stall_clear(ep_addr_to_nrfx(ep));
LOG_DBG("Unstall on EP %d", ep);
return 0;
}
int usb_dc_ep_halt(const u8_t ep)
{
return usb_dc_ep_set_stall(ep);
}
int usb_dc_ep_is_stalled(const u8_t ep, u8_t *const stalled)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
*stalled = (u8_t) nrfx_usbd_ep_stall_check(ep_addr_to_nrfx(ep));
return 0;
}
int usb_dc_ep_enable(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
if (ep_ctx->cfg.en) {
return -EALREADY;
}
LOG_DBG("EP enable: %d.", ep);
ep_ctx->cfg.en = true;
/* Defer the endpoint enable if USBD is not ready yet. */
if (dev_ready()) {
nrfx_usbd_ep_enable(ep_addr_to_nrfx(ep));
}
return 0;
}
int usb_dc_ep_disable(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
if (!ep_ctx->cfg.en) {
return -EALREADY;
}
LOG_DBG("EP disable: %d.", ep);
nrfx_usbd_ep_disable(ep_addr_to_nrfx(ep));
ep_ctx->cfg.en = false;
return 0;
}
int usb_dc_ep_flush(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
ep_ctx->buf.len = 0;
ep_ctx->buf.curr = ep_ctx->buf.data;
nrfx_usbd_transfer_out_drop(ep_addr_to_nrfx(ep));
return 0;
}
int usb_dc_ep_write(const u8_t ep, const u8_t *const data,
const u32_t data_len, u32_t *const ret_bytes)
{
LOG_DBG("ep_write: ep %d, len %d", ep, data_len);
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
struct nrf_usbd_ep_ctx *ep_ctx;
u32_t bytes_to_copy;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
if (NRF_USBD_EPOUT_CHECK(ep)) {
return -EINVAL;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
int sem_status = k_sem_take(&ctx->dma_in_use, K_NO_WAIT);
/* USBD hardware does not allow scheduling multiple DMA transfers
* at a time. Next USB transfer can be triggered after all DMA
* operations are complete.
*/
if (sem_status != 0) {
return -EAGAIN;
}
/* Data length longer than ep_ctx->cfg.max_sz is allowed.
* NRFX driver performs the fragmentation.
*/
bytes_to_copy = data_len;
memcpy(ep_ctx->buf.data, data, bytes_to_copy);
ep_ctx->buf.len = bytes_to_copy;
if (ret_bytes) {
*ret_bytes = bytes_to_copy;
}
/* Setup stage is handled by hardware.
* Detect the setup stage initiated by the stack
* and perform appropriate action.
*/
if ((ep_ctx->cfg.type == USB_DC_EP_CONTROL)
&& (nrfx_usbd_last_setup_dir_get() != ep)) {
k_sem_give(&ctx->dma_in_use);
nrfx_usbd_setup_clear();
return 0;
}
NRFX_USBD_TRANSFER_IN(transfer, ep_ctx->buf.data, ep_ctx->buf.len, 0);
nrfx_err_t err = nrfx_usbd_ep_transfer(ep_addr_to_nrfx(ep), &transfer);
if (err != NRFX_SUCCESS) {
k_sem_give(&ctx->dma_in_use);
LOG_ERR("nRF USBD write error: %d.", (u32_t)err);
__ASSERT_NO_MSG(0);
}
return 0;
}
int usb_dc_ep_read_wait(u8_t ep, u8_t *data, u32_t max_data_len,
u32_t *read_bytes)
{
struct nrf_usbd_ep_ctx *ep_ctx;
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
u32_t bytes_to_copy;
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
if (NRF_USBD_EPIN_CHECK(ep)) {
return -EINVAL;
}
if (!data && max_data_len) {
return -EINVAL;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
k_sem_take(&ctx->dma_in_use, K_FOREVER);
bytes_to_copy = min(max_data_len, ep_ctx->buf.len);
if (!data && !max_data_len) {
if (read_bytes) {
*read_bytes = ep_ctx->buf.len;
}
k_sem_give(&ctx->dma_in_use);
return 0;
}
memcpy(data, ep_ctx->buf.curr, bytes_to_copy);
ep_ctx->buf.curr += bytes_to_copy;
ep_ctx->buf.len -= bytes_to_copy;
if (read_bytes) {
*read_bytes = bytes_to_copy;
}
k_sem_give(&ctx->dma_in_use);
return 0;
}
int usb_dc_ep_read_continue(u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
struct nrf_usbd_ctx *ctx = get_usbd_ctx();
if (!dev_attached() || !dev_ready()) {
return -ENODEV;
}
if (NRF_USBD_EPIN_CHECK(ep)) {
return -EINVAL;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
k_sem_take(&ctx->dma_in_use, K_FOREVER);
if (!ep_ctx->buf.len) {
ep_ctx->buf.curr = ep_ctx->buf.data;
ep_ctx->read_complete = true;
if (ep_ctx->read_pending) {
struct usbd_ep_event *ev = usbd_evt_alloc();
ev->ep = ep_ctx;
ev->evt = EP_EVT_RECV_REQ;
usbd_evt_put(ev);
usbd_work_schedule();
}
}
k_sem_give(&ctx->dma_in_use);
return 0;
}
int usb_dc_ep_read(const u8_t ep, u8_t *const data,
const u32_t max_data_len, u32_t *const read_bytes)
{
LOG_DBG("ep_read: ep %d, maxlen %d", ep, max_data_len);
int ret;
ret = usb_dc_ep_read_wait(ep, data, max_data_len, read_bytes);
if (ret) {
return ret;
}
if (!data && !max_data_len) {
return ret;
}
ret = usb_dc_ep_read_continue(ep);
return ret;
}
int usb_dc_ep_set_callback(const u8_t ep, const usb_dc_ep_callback cb)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
ep_ctx->cfg.cb = cb;
return 0;
}
int usb_dc_set_status_callback(const usb_dc_status_callback cb)
{
get_usbd_ctx()->status_cb = cb;
return 0;
}
int usb_dc_ep_mps(const u8_t ep)
{
struct nrf_usbd_ep_ctx *ep_ctx;
if (!dev_attached()) {
return -ENODEV;
}
ep_ctx = endpoint_ctx(ep);
if (!ep_ctx) {
return -EINVAL;
}
return ep_ctx->cfg.max_sz;
}