zephyr/subsys/pm/pm.c

272 lines
7.5 KiB
C

/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/pm/pm.h>
#include <zephyr/pm/state.h>
#include <zephyr/pm/policy.h>
#include <zephyr/tracing/tracing.h>
#include "pm_stats.h"
#include "device_system_managed.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pm, CONFIG_PM_LOG_LEVEL);
static ATOMIC_DEFINE(z_post_ops_required, CONFIG_MP_MAX_NUM_CPUS);
static sys_slist_t pm_notifiers = SYS_SLIST_STATIC_INIT(&pm_notifiers);
/*
* Properly initialize cpu power states. Do not make assumptions that
* ACTIVE_STATE is 0
*/
#define CPU_PM_STATE_INIT(_, __) \
{ .state = PM_STATE_ACTIVE }
static struct pm_state_info z_cpus_pm_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct pm_state_info z_cpus_pm_forced_state[] = {
LISTIFY(CONFIG_MP_MAX_NUM_CPUS, CPU_PM_STATE_INIT, (,))
};
static struct k_spinlock pm_forced_state_lock;
static struct k_spinlock pm_notifier_lock;
/*
* Function called to notify when the system is entering / exiting a
* power state
*/
static inline void pm_state_notify(bool entering_state)
{
struct pm_notifier *notifier;
k_spinlock_key_t pm_notifier_key;
void (*callback)(enum pm_state state);
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
SYS_SLIST_FOR_EACH_CONTAINER(&pm_notifiers, notifier, _node) {
if (entering_state) {
callback = notifier->state_entry;
} else {
callback = notifier->state_exit;
}
if (callback) {
callback(z_cpus_pm_state[_current_cpu->id].state);
}
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
static inline int32_t ticks_expiring_sooner(int32_t ticks1, int32_t ticks2)
{
/*
* Ticks are relative numbers that defines the number of ticks
* until the next event.
* Its maximum value is K_TICKS_FOREVER ((uint32_t)-1) which is -1
* when we cast it to (int32_t)
* We need to find out which one is the closest
*/
__ASSERT(ticks1 >= -1, "ticks1 has unexpected negative value");
__ASSERT(ticks2 >= -1, "ticks2 has unexpected negative value");
if (ticks1 == K_TICKS_FOREVER) {
return ticks2;
}
if (ticks2 == K_TICKS_FOREVER) {
return ticks1;
}
/* At this step ticks1 and ticks2 are positive */
return MIN(ticks1, ticks2);
}
void pm_system_resume(void)
{
uint8_t id = _current_cpu->id;
/*
* This notification is called from the ISR of the event
* that caused exit from kernel idling after PM operations.
*
* Some CPU low power states require enabling of interrupts
* atomically when entering those states. The wake up from
* such a state first executes code in the ISR of the interrupt
* that caused the wake. This hook will be called from the ISR.
* For such CPU LPS states, do post operations and restores here.
* The kernel scheduler will get control after the ISR finishes
* and it may schedule another thread.
*/
if (atomic_test_and_clear_bit(z_post_ops_required, id)) {
#ifdef CONFIG_PM_DEVICE_SYSTEM_MANAGED
if (atomic_add(&_cpus_active, 1) == 0) {
if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) &&
!z_cpus_pm_state[id].pm_device_disabled) {
pm_resume_devices();
}
}
#endif
pm_state_exit_post_ops(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id);
pm_state_notify(false);
#ifdef CONFIG_SYS_CLOCK_EXISTS
sys_clock_idle_exit();
#endif /* CONFIG_SYS_CLOCK_EXISTS */
z_cpus_pm_state[id] = (struct pm_state_info){PM_STATE_ACTIVE,
0, 0};
}
}
bool pm_state_force(uint8_t cpu, const struct pm_state_info *info)
{
k_spinlock_key_t key;
__ASSERT(info->state < PM_STATE_COUNT,
"Invalid power state %d!", info->state);
key = k_spin_lock(&pm_forced_state_lock);
z_cpus_pm_forced_state[cpu] = *info;
k_spin_unlock(&pm_forced_state_lock, key);
return true;
}
bool pm_system_suspend(int32_t kernel_ticks)
{
uint8_t id = _current_cpu->id;
k_spinlock_key_t key;
int32_t ticks, events_ticks;
SYS_PORT_TRACING_FUNC_ENTER(pm, system_suspend, kernel_ticks);
/*
* CPU needs to be fully wake up before the event is triggered.
* We need to find out first the ticks to the next event
*/
events_ticks = pm_policy_next_event_ticks();
ticks = ticks_expiring_sooner(kernel_ticks, events_ticks);
key = k_spin_lock(&pm_forced_state_lock);
if (z_cpus_pm_forced_state[id].state != PM_STATE_ACTIVE) {
z_cpus_pm_state[id] = z_cpus_pm_forced_state[id];
z_cpus_pm_forced_state[id].state = PM_STATE_ACTIVE;
} else {
const struct pm_state_info *info;
info = pm_policy_next_state(id, ticks);
if (info != NULL) {
z_cpus_pm_state[id] = *info;
} else {
z_cpus_pm_state[id].state = PM_STATE_ACTIVE;
}
}
k_spin_unlock(&pm_forced_state_lock, key);
if (z_cpus_pm_state[id].state == PM_STATE_ACTIVE) {
LOG_DBG("No PM operations done.");
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
#ifdef CONFIG_PM_DEVICE_SYSTEM_MANAGED
if (atomic_sub(&_cpus_active, 1) == 1) {
if ((z_cpus_pm_state[id].state != PM_STATE_RUNTIME_IDLE) &&
!z_cpus_pm_state[id].pm_device_disabled) {
if (!pm_suspend_devices()) {
pm_resume_devices();
z_cpus_pm_state[id].state = PM_STATE_ACTIVE;
(void)atomic_add(&_cpus_active, 1);
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return false;
}
}
}
#endif
if ((z_cpus_pm_state[id].exit_latency_us != 0) &&
(ticks != K_TICKS_FOREVER)) {
/*
* We need to set the timer to interrupt a little bit early to
* accommodate the time required by the CPU to fully wake up.
*/
sys_clock_set_timeout(ticks -
k_us_to_ticks_ceil32(
z_cpus_pm_state[id].exit_latency_us),
true);
}
/*
* This function runs with interruptions locked but it is
* expected the SoC to unlock them in
* pm_state_exit_post_ops() when returning to active
* state. We don't want to be scheduled out yet, first we need
* to send a notification about leaving the idle state. So,
* we lock the scheduler here and unlock just after we have
* sent the notification in pm_system_resume().
*/
k_sched_lock();
pm_stats_start();
/* Enter power state */
pm_state_notify(true);
atomic_set_bit(z_post_ops_required, id);
pm_state_set(z_cpus_pm_state[id].state, z_cpus_pm_state[id].substate_id);
pm_stats_stop();
/* Wake up sequence starts here */
pm_stats_update(z_cpus_pm_state[id].state);
pm_system_resume();
k_sched_unlock();
SYS_PORT_TRACING_FUNC_EXIT(pm, system_suspend, ticks,
z_cpus_pm_state[id].state);
return true;
}
void pm_notifier_register(struct pm_notifier *notifier)
{
k_spinlock_key_t pm_notifier_key = k_spin_lock(&pm_notifier_lock);
sys_slist_append(&pm_notifiers, &notifier->_node);
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
}
int pm_notifier_unregister(struct pm_notifier *notifier)
{
int ret = -EINVAL;
k_spinlock_key_t pm_notifier_key;
pm_notifier_key = k_spin_lock(&pm_notifier_lock);
if (sys_slist_find_and_remove(&pm_notifiers, &(notifier->_node))) {
ret = 0;
}
k_spin_unlock(&pm_notifier_lock, pm_notifier_key);
return ret;
}
const struct pm_state_info *pm_state_next_get(uint8_t cpu)
{
return &z_cpus_pm_state[cpu];
}
void z_pm_save_idle_exit(void)
{
/* Some CPU low power states require notification at the ISR
* to allow any operations that needs to be done before kernel
* switches task or processes nested interrupts.
* This can be simply ignored if not required.
*/
pm_system_resume();
}