zephyr/lib/heap/heap_stress.c

154 lines
4.6 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/sys/sys_heap.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include "heap.h"
struct z_heap_stress_rec {
void *(*alloc_fn)(void *arg, size_t bytes);
void (*free_fn)(void *arg, void *p);
void *arg;
size_t total_bytes;
struct z_heap_stress_block *blocks;
size_t nblocks;
size_t blocks_alloced;
size_t bytes_alloced;
uint32_t target_percent;
};
struct z_heap_stress_block {
void *ptr;
size_t sz;
};
/* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html)
*
* Here to guarantee cross-platform test repeatability.
*/
static uint32_t rand32(void)
{
static uint64_t state = 123456789; /* seed */
state = state * 2862933555777941757UL + 3037000493UL;
return (uint32_t)(state >> 32);
}
static bool rand_alloc_choice(struct z_heap_stress_rec *sr)
{
/* Edge cases: no blocks allocated, and no space for a new one */
if (sr->blocks_alloced == 0) {
return true;
} else if (sr->blocks_alloced >= sr->nblocks) {
return false;
} else {
/* The way this works is to scale the chance of choosing to
* allocate vs. free such that it's even odds when the heap is
* at the target percent, with linear tapering on the low
* slope (i.e. we choose to always allocate with an empty
* heap, allocate 50% of the time when the heap is exactly at
* the target, and always free when above the target). In
* practice, the operations aren't quite symmetric (you can
* always free, but your allocation might fail), and the units
* aren't matched (we're doing math based on bytes allocated
* and ignoring the overhead) but this is close enough. And
* yes, the math here is coarse (in units of percent), but
* that's good enough and fits well inside 32 bit quantities.
* (Note precision issue when heap size is above 40MB
* though!).
*/
__ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!");
uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes;
uint32_t target = sr->target_percent ? sr->target_percent : 1;
uint32_t free_chance = 0xffffffffU;
if (full_pct < sr->target_percent) {
free_chance = full_pct * (0x80000000U / target);
}
return rand32() > free_chance;
}
}
/* Chooses a size of block to allocate, logarithmically favoring
* smaller blocks (i.e. blocks twice as large are half as frequent
*/
static size_t rand_alloc_size(struct z_heap_stress_rec *sr)
{
ARG_UNUSED(sr);
/* Min scale of 4 means that the half of the requests in the
* smallest size have an average size of 8
*/
int scale = 4 + __builtin_clz(rand32());
return rand32() & BIT_MASK(scale);
}
/* Returns the index of a randomly chosen block to free */
static size_t rand_free_choice(struct z_heap_stress_rec *sr)
{
return rand32() % sr->blocks_alloced;
}
/* General purpose heap stress test. Takes function pointers to allow
* for testing multiple heap APIs with the same rig. The alloc and
* free functions are passed back the argument as a context pointer.
* The "log" function is for readable user output. The total_bytes
* argument should reflect the size of the heap being tested. The
* scratch array is used to store temporary state and should be sized
* about half as large as the heap itself. Returns true on success.
*/
void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes),
void (*free_fn)(void *arg, void *p),
void *arg, size_t total_bytes,
uint32_t op_count,
void *scratch_mem, size_t scratch_bytes,
int target_percent,
struct z_heap_stress_result *result)
{
struct z_heap_stress_rec sr = {
.alloc_fn = alloc_fn,
.free_fn = free_fn,
.arg = arg,
.total_bytes = total_bytes,
.blocks = scratch_mem,
.nblocks = scratch_bytes / sizeof(struct z_heap_stress_block),
.target_percent = target_percent,
};
*result = (struct z_heap_stress_result) {0};
for (uint32_t i = 0; i < op_count; i++) {
if (rand_alloc_choice(&sr)) {
size_t sz = rand_alloc_size(&sr);
void *p = sr.alloc_fn(sr.arg, sz);
result->total_allocs++;
if (p != NULL) {
result->successful_allocs++;
sr.blocks[sr.blocks_alloced].ptr = p;
sr.blocks[sr.blocks_alloced].sz = sz;
sr.blocks_alloced++;
sr.bytes_alloced += sz;
}
} else {
int b = rand_free_choice(&sr);
void *p = sr.blocks[b].ptr;
size_t sz = sr.blocks[b].sz;
result->total_frees++;
sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1];
sr.blocks_alloced--;
sr.bytes_alloced -= sz;
sr.free_fn(sr.arg, p);
}
result->accumulated_in_use_bytes += sr.bytes_alloced;
}
}