935 lines
25 KiB
C
935 lines
25 KiB
C
/*
|
|
* Copyright (c) 2018, NXP
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nxp_imx_lpspi
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/drivers/spi.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <fsl_lpspi.h>
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
#include <zephyr/drivers/dma.h>
|
|
#endif
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#ifdef CONFIG_SPI_RTIO
|
|
#include <zephyr/rtio/rtio.h>
|
|
#include <zephyr/spinlock.h>
|
|
#endif
|
|
|
|
LOG_MODULE_REGISTER(spi_mcux_lpspi, CONFIG_SPI_LOG_LEVEL);
|
|
|
|
#include "spi_context.h"
|
|
|
|
#define CHIP_SELECT_COUNT 4
|
|
#define MAX_DATA_WIDTH 4096
|
|
|
|
struct spi_mcux_config {
|
|
LPSPI_Type *base;
|
|
const struct device *clock_dev;
|
|
clock_control_subsys_t clock_subsys;
|
|
void (*irq_config_func)(const struct device *dev);
|
|
uint32_t pcs_sck_delay;
|
|
uint32_t sck_pcs_delay;
|
|
uint32_t transfer_delay;
|
|
const struct pinctrl_dev_config *pincfg;
|
|
lpspi_pin_config_t data_pin_config;
|
|
};
|
|
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
#define SPI_MCUX_LPSPI_DMA_ERROR_FLAG 0x01
|
|
#define SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG 0x02
|
|
#define SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG 0x04
|
|
#define SPI_MCUX_LPSPI_DMA_DONE_FLAG \
|
|
(SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG | SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG)
|
|
|
|
struct stream {
|
|
const struct device *dma_dev;
|
|
uint32_t channel; /* stores the channel for dma */
|
|
struct dma_config dma_cfg;
|
|
struct dma_block_config dma_blk_cfg;
|
|
};
|
|
#endif
|
|
|
|
struct spi_mcux_data {
|
|
const struct device *dev;
|
|
lpspi_master_handle_t handle;
|
|
struct spi_context ctx;
|
|
size_t transfer_len;
|
|
|
|
#ifdef CONFIG_SPI_RTIO
|
|
struct rtio *r;
|
|
struct rtio_iodev iodev;
|
|
struct rtio_iodev_sqe *txn_head;
|
|
struct rtio_iodev_sqe *txn_curr;
|
|
struct spi_dt_spec dt_spec;
|
|
struct k_spinlock lock;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
volatile uint32_t status_flags;
|
|
struct stream dma_rx;
|
|
struct stream dma_tx;
|
|
/* dummy value used for transferring NOP when tx buf is null */
|
|
uint32_t dummy_tx_buffer;
|
|
/* dummy value used to read RX data into when rx buf is null */
|
|
uint32_t dummy_rx_buffer;
|
|
#endif
|
|
};
|
|
|
|
static void spi_mcux_transfer_next_packet(const struct device *dev)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
LPSPI_Type *base = config->base;
|
|
struct spi_context *ctx = &data->ctx;
|
|
lpspi_transfer_t transfer;
|
|
status_t status;
|
|
|
|
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
|
|
/* nothing left to rx or tx, we're done! */
|
|
spi_context_cs_control(&data->ctx, false);
|
|
spi_context_complete(&data->ctx, dev, 0);
|
|
return;
|
|
}
|
|
|
|
transfer.configFlags = kLPSPI_MasterPcsContinuous |
|
|
(ctx->config->slave << LPSPI_MASTER_PCS_SHIFT);
|
|
|
|
if (ctx->tx_len == 0) {
|
|
/* rx only, nothing to tx */
|
|
transfer.txData = NULL;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->rx_len;
|
|
} else if (ctx->rx_len == 0) {
|
|
/* tx only, nothing to rx */
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = NULL;
|
|
transfer.dataSize = ctx->tx_len;
|
|
} else if (ctx->tx_len == ctx->rx_len) {
|
|
/* rx and tx are the same length */
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->tx_len;
|
|
} else if (ctx->tx_len > ctx->rx_len) {
|
|
/* Break up the tx into multiple transfers so we don't have to
|
|
* rx into a longer intermediate buffer. Leave chip select
|
|
* active between transfers.
|
|
*/
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->rx_len;
|
|
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
|
|
} else {
|
|
/* Break up the rx into multiple transfers so we don't have to
|
|
* tx from a longer intermediate buffer. Leave chip select
|
|
* active between transfers.
|
|
*/
|
|
transfer.txData = (uint8_t *) ctx->tx_buf;
|
|
transfer.rxData = ctx->rx_buf;
|
|
transfer.dataSize = ctx->tx_len;
|
|
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
|
|
}
|
|
|
|
if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
|
|
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
|
|
}
|
|
|
|
data->transfer_len = transfer.dataSize;
|
|
|
|
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
|
|
&transfer);
|
|
if (status != kStatus_Success) {
|
|
LOG_ERR("Transfer could not start");
|
|
}
|
|
}
|
|
|
|
static void spi_mcux_isr(const struct device *dev)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
LPSPI_Type *base = config->base;
|
|
|
|
LPSPI_MasterTransferHandleIRQ(base, &data->handle);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_RTIO
|
|
static void spi_mcux_iodev_complete(const struct device *dev, int status);
|
|
#endif
|
|
|
|
static void spi_mcux_master_transfer_callback(LPSPI_Type *base,
|
|
lpspi_master_handle_t *handle, status_t status, void *userData)
|
|
{
|
|
struct spi_mcux_data *data = userData;
|
|
|
|
#ifdef CONFIG_SPI_RTIO
|
|
if (data->txn_head != NULL) {
|
|
spi_mcux_iodev_complete(data->dev, status);
|
|
return;
|
|
}
|
|
#endif
|
|
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
|
|
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
|
|
|
|
spi_mcux_transfer_next_packet(data->dev);
|
|
}
|
|
|
|
static int spi_mcux_configure(const struct device *dev,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
LPSPI_Type *base = config->base;
|
|
lpspi_master_config_t master_config;
|
|
uint32_t clock_freq;
|
|
uint32_t word_size;
|
|
|
|
if (spi_context_configured(&data->ctx, spi_cfg)) {
|
|
/* This configuration is already in use */
|
|
return 0;
|
|
}
|
|
|
|
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
|
|
LOG_ERR("Half-duplex not supported");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
LPSPI_MasterGetDefaultConfig(&master_config);
|
|
|
|
if (spi_cfg->slave > CHIP_SELECT_COUNT) {
|
|
LOG_ERR("Slave %d is greater than %d",
|
|
spi_cfg->slave,
|
|
CHIP_SELECT_COUNT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
|
|
if (word_size > MAX_DATA_WIDTH) {
|
|
LOG_ERR("Word size %d is greater than %d",
|
|
word_size, MAX_DATA_WIDTH);
|
|
return -EINVAL;
|
|
}
|
|
|
|
master_config.bitsPerFrame = word_size;
|
|
|
|
master_config.cpol =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
|
|
? kLPSPI_ClockPolarityActiveLow
|
|
: kLPSPI_ClockPolarityActiveHigh;
|
|
|
|
master_config.cpha =
|
|
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
|
|
? kLPSPI_ClockPhaseSecondEdge
|
|
: kLPSPI_ClockPhaseFirstEdge;
|
|
|
|
master_config.direction =
|
|
(spi_cfg->operation & SPI_TRANSFER_LSB)
|
|
? kLPSPI_LsbFirst
|
|
: kLPSPI_MsbFirst;
|
|
|
|
master_config.baudRate = spi_cfg->frequency;
|
|
|
|
master_config.pcsToSckDelayInNanoSec = config->pcs_sck_delay;
|
|
master_config.lastSckToPcsDelayInNanoSec = config->sck_pcs_delay;
|
|
master_config.betweenTransferDelayInNanoSec = config->transfer_delay;
|
|
|
|
master_config.pinCfg = config->data_pin_config;
|
|
|
|
if (!device_is_ready(config->clock_dev)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
|
|
&clock_freq)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (data->ctx.config != NULL) {
|
|
/* Setting the baud rate in LPSPI_MasterInit requires module to be disabled. Only
|
|
* disable if already configured, otherwise the clock is not enabled and the
|
|
* CR register cannot be written.
|
|
*/
|
|
LPSPI_Enable(base, false);
|
|
while ((base->CR & LPSPI_CR_MEN_MASK) != 0U) {
|
|
/* Wait until LPSPI is disabled. Datasheet:
|
|
* After writing 0, MEN (Module Enable) remains set until the LPSPI has
|
|
* completed the current transfer and is idle.
|
|
*/
|
|
}
|
|
}
|
|
|
|
LPSPI_MasterInit(base, &master_config, clock_freq);
|
|
|
|
LPSPI_MasterTransferCreateHandle(base, &data->handle,
|
|
spi_mcux_master_transfer_callback,
|
|
data);
|
|
|
|
LPSPI_SetDummyData(base, 0);
|
|
|
|
data->ctx.config = spi_cfg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
static int spi_mcux_dma_rxtx_load(const struct device *dev,
|
|
size_t *dma_size);
|
|
|
|
/* This function is executed in the interrupt context */
|
|
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
|
|
uint32_t channel, int status)
|
|
{
|
|
/* arg directly holds the spi device */
|
|
const struct device *spi_dev = arg;
|
|
struct spi_mcux_data *data = (struct spi_mcux_data *)spi_dev->data;
|
|
|
|
if (status < 0) {
|
|
LOG_ERR("DMA callback error with channel %d.", channel);
|
|
data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
|
|
} else {
|
|
/* identify the origin of this callback */
|
|
if (channel == data->dma_tx.channel) {
|
|
/* this part of the transfer ends */
|
|
data->status_flags |= SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG;
|
|
LOG_DBG("DMA TX Block Complete");
|
|
} else if (channel == data->dma_rx.channel) {
|
|
/* this part of the transfer ends */
|
|
data->status_flags |= SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG;
|
|
LOG_DBG("DMA RX Block Complete");
|
|
} else {
|
|
LOG_ERR("DMA callback channel %d is not valid.",
|
|
channel);
|
|
data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG;
|
|
}
|
|
}
|
|
#if CONFIG_SPI_ASYNC
|
|
if (data->ctx.asynchronous &&
|
|
((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) ==
|
|
SPI_MCUX_LPSPI_DMA_DONE_FLAG)) {
|
|
/* Load dma blocks of equal length */
|
|
size_t dma_size = MIN(data->ctx.tx_len, data->ctx.rx_len);
|
|
|
|
if (dma_size == 0) {
|
|
dma_size = MAX(data->ctx.tx_len, data->ctx.rx_len);
|
|
}
|
|
|
|
spi_context_update_tx(&data->ctx, 1, dma_size);
|
|
spi_context_update_rx(&data->ctx, 1, dma_size);
|
|
|
|
if (data->ctx.tx_len == 0 && data->ctx.rx_len == 0) {
|
|
spi_context_complete(&data->ctx, spi_dev, 0);
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
spi_context_complete(&data->ctx, spi_dev, 0);
|
|
}
|
|
|
|
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len)
|
|
{
|
|
const struct spi_mcux_config *cfg = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
struct dma_block_config *blk_cfg;
|
|
LPSPI_Type *base = cfg->base;
|
|
|
|
/* remember active TX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_tx;
|
|
|
|
blk_cfg = &stream->dma_blk_cfg;
|
|
|
|
/* prepare the block for this TX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
|
|
if (buf == NULL) {
|
|
/* Treat the transfer as a peripheral to peripheral one, so that DMA
|
|
* reads from this address each time
|
|
*/
|
|
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
|
|
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
|
|
} else {
|
|
/* tx direction has memory as source and periph as dest. */
|
|
blk_cfg->source_address = (uint32_t)buf;
|
|
stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
|
|
}
|
|
/* Enable scatter/gather */
|
|
blk_cfg->source_gather_en = 1;
|
|
/* Dest is LPSPI tx fifo */
|
|
blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base);
|
|
blk_cfg->block_size = len;
|
|
/* Transfer 1 byte each DMA loop */
|
|
stream->dma_cfg.source_burst_length = 1;
|
|
|
|
stream->dma_cfg.head_block = &stream->dma_blk_cfg;
|
|
/* give the client dev as arg, as the callback comes from the dma */
|
|
stream->dma_cfg.user_data = (struct device *)dev;
|
|
/* pass our client origin to the dma: data->dma_tx.dma_channel */
|
|
return dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
|
|
&stream->dma_cfg);
|
|
}
|
|
|
|
static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
const struct spi_mcux_config *cfg = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
struct dma_block_config *blk_cfg;
|
|
LPSPI_Type *base = cfg->base;
|
|
|
|
/* retrieve active RX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_rx;
|
|
|
|
blk_cfg = &stream->dma_blk_cfg;
|
|
|
|
/* prepare the block for this RX DMA channel */
|
|
memset(blk_cfg, 0, sizeof(struct dma_block_config));
|
|
|
|
if (buf == NULL) {
|
|
/* Treat the transfer as a peripheral to peripheral one, so that DMA
|
|
* reads from this address each time
|
|
*/
|
|
blk_cfg->dest_address = (uint32_t)&data->dummy_rx_buffer;
|
|
stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL;
|
|
} else {
|
|
/* rx direction has periph as source and mem as dest. */
|
|
blk_cfg->dest_address = (uint32_t)buf;
|
|
stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
|
|
}
|
|
blk_cfg->block_size = len;
|
|
/* Enable scatter/gather */
|
|
blk_cfg->dest_scatter_en = 1;
|
|
/* Source is LPSPI rx fifo */
|
|
blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base);
|
|
stream->dma_cfg.source_burst_length = 1;
|
|
|
|
stream->dma_cfg.head_block = blk_cfg;
|
|
stream->dma_cfg.user_data = (struct device *)dev;
|
|
|
|
/* pass our client origin to the dma: data->dma_rx.channel */
|
|
return dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
|
|
&stream->dma_cfg);
|
|
}
|
|
|
|
static int wait_dma_rx_tx_done(const struct device *dev)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
int ret = -1;
|
|
|
|
while (1) {
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
if (ret) {
|
|
LOG_DBG("Timed out waiting for SPI context to complete");
|
|
return ret;
|
|
}
|
|
if (data->status_flags & SPI_MCUX_LPSPI_DMA_ERROR_FLAG) {
|
|
return -EIO;
|
|
}
|
|
|
|
if ((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) ==
|
|
SPI_MCUX_LPSPI_DMA_DONE_FLAG) {
|
|
LOG_DBG("DMA block completed");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int spi_mcux_dma_rxtx_load(const struct device *dev,
|
|
size_t *dma_size)
|
|
{
|
|
struct spi_mcux_data *lpspi_data = dev->data;
|
|
int ret = 0;
|
|
|
|
/* Clear status flags */
|
|
lpspi_data->status_flags = 0U;
|
|
/* Load dma blocks of equal length */
|
|
*dma_size = MIN(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
|
|
if (*dma_size == 0) {
|
|
*dma_size = MAX(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len);
|
|
}
|
|
|
|
ret = spi_mcux_dma_tx_load(dev, lpspi_data->ctx.tx_buf,
|
|
*dma_size);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = spi_mcux_dma_rx_load(dev, lpspi_data->ctx.rx_buf,
|
|
*dma_size);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Start DMA */
|
|
ret = dma_start(lpspi_data->dma_tx.dma_dev,
|
|
lpspi_data->dma_tx.channel);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = dma_start(lpspi_data->dma_rx.dma_dev,
|
|
lpspi_data->dma_rx.channel);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int transceive_dma(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous,
|
|
spi_callback_t cb,
|
|
void *userdata)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
LPSPI_Type *base = config->base;
|
|
int ret;
|
|
size_t dma_size;
|
|
|
|
if (!asynchronous) {
|
|
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
|
|
}
|
|
|
|
ret = spi_mcux_configure(dev, spi_cfg);
|
|
if (ret) {
|
|
if (!asynchronous) {
|
|
spi_context_release(&data->ctx, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* DMA is fast enough watermarks are not required */
|
|
LPSPI_SetFifoWatermarks(base, 0U, 0U);
|
|
|
|
if (!asynchronous) {
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
/* Send each spi buf via DMA, updating context as DMA completes */
|
|
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
|
|
/* Load dma block */
|
|
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
/* Enable DMA Requests */
|
|
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
|
|
|
|
/* Wait for DMA to finish */
|
|
ret = wait_dma_rx_tx_done(dev);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) {
|
|
/* wait until module is idle */
|
|
}
|
|
|
|
/* Disable DMA */
|
|
LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
|
|
|
|
/* Update SPI contexts with amount of data we just sent */
|
|
spi_context_update_tx(&data->ctx, 1, dma_size);
|
|
spi_context_update_rx(&data->ctx, 1, dma_size);
|
|
}
|
|
spi_context_cs_control(&data->ctx, false);
|
|
|
|
out:
|
|
spi_context_release(&data->ctx, ret);
|
|
}
|
|
#if CONFIG_SPI_ASYNC
|
|
else {
|
|
data->ctx.asynchronous = asynchronous;
|
|
data->ctx.callback = cb;
|
|
data->ctx.callback_data = userdata;
|
|
|
|
ret = spi_mcux_dma_rxtx_load(dev, &dma_size);
|
|
if (ret != 0) {
|
|
goto out;
|
|
}
|
|
|
|
/* Enable DMA Requests */
|
|
LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable);
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int transceive(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous,
|
|
spi_callback_t cb,
|
|
void *userdata)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
int ret;
|
|
|
|
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
|
|
|
|
ret = spi_mcux_configure(dev, spi_cfg);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
spi_mcux_transfer_next_packet(dev);
|
|
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
out:
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int spi_mcux_transceive(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs)
|
|
{
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
const struct spi_mcux_data *data = dev->data;
|
|
|
|
if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) {
|
|
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
|
|
}
|
|
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
|
|
|
|
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
static int spi_mcux_transceive_async(const struct device *dev,
|
|
const struct spi_config *spi_cfg,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
spi_callback_t cb,
|
|
void *userdata)
|
|
{
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) {
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
}
|
|
|
|
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
|
|
#else
|
|
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
|
|
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
|
|
}
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
|
|
static int spi_mcux_release(const struct device *dev,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_mcux_init(const struct device *dev)
|
|
{
|
|
int err;
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
config->irq_config_func(dev);
|
|
|
|
err = spi_context_cs_configure_all(&data->ctx);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
data->dev = dev;
|
|
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
if (data->dma_tx.dma_dev && data->dma_rx.dma_dev) {
|
|
if (!device_is_ready(data->dma_tx.dma_dev)) {
|
|
LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (!device_is_ready(data->dma_rx.dma_dev)) {
|
|
LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
|
|
|
|
#ifdef CONFIG_SPI_RTIO
|
|
data->dt_spec.bus = dev;
|
|
data->iodev.api = &spi_iodev_api;
|
|
data->iodev.data = &data->dt_spec;
|
|
rtio_mpsc_init(&data->iodev.iodev_sq);
|
|
#endif
|
|
|
|
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_RTIO
|
|
static inline k_spinlock_key_t spi_spin_lock(const struct device *dev)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
return k_spin_lock(&data->lock);
|
|
}
|
|
|
|
static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
k_spin_unlock(&data->lock, key);
|
|
}
|
|
|
|
|
|
static void spi_mcux_iodev_next(const struct device *dev, bool completion);
|
|
|
|
static void spi_mcux_iodev_start(const struct device *dev)
|
|
{
|
|
const struct spi_mcux_config *config = dev->config;
|
|
struct spi_mcux_data *data = dev->data;
|
|
struct rtio_sqe *sqe = &data->txn_curr->sqe;
|
|
struct spi_dt_spec *spi_dt_spec = sqe->iodev->data;
|
|
struct spi_config *spi_cfg = &spi_dt_spec->config;
|
|
struct rtio_iodev_sqe *txn_head = data->txn_head;
|
|
|
|
LPSPI_Type *base = config->base;
|
|
lpspi_transfer_t transfer;
|
|
status_t status;
|
|
|
|
transfer.configFlags = kLPSPI_MasterPcsContinuous |
|
|
(spi_cfg->slave << LPSPI_MASTER_PCS_SHIFT);
|
|
|
|
switch (sqe->op) {
|
|
case RTIO_OP_RX:
|
|
transfer.txData = NULL;
|
|
transfer.rxData = sqe->buf;
|
|
transfer.dataSize = sqe->buf_len;
|
|
break;
|
|
case RTIO_OP_TX:
|
|
transfer.rxData = NULL;
|
|
transfer.txData = sqe->buf;
|
|
transfer.dataSize = sqe->buf_len;
|
|
break;
|
|
case RTIO_OP_TINY_TX:
|
|
transfer.rxData = NULL;
|
|
transfer.txData = sqe->tiny_buf;
|
|
transfer.dataSize = sqe->tiny_buf_len;
|
|
break;
|
|
case RTIO_OP_TXRX:
|
|
transfer.txData = sqe->tx_buf;
|
|
transfer.rxData = sqe->rx_buf;
|
|
transfer.dataSize = sqe->txrx_buf_len;
|
|
break;
|
|
default:
|
|
LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe);
|
|
|
|
spi_mcux_iodev_next(dev, true);
|
|
rtio_iodev_sqe_err(txn_head, -EINVAL);
|
|
spi_mcux_iodev_complete(dev, 0);
|
|
return;
|
|
}
|
|
|
|
data->transfer_len = transfer.dataSize;
|
|
|
|
k_spinlock_key_t key = spi_spin_lock(dev);
|
|
|
|
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
|
|
&transfer);
|
|
spi_spin_unlock(dev, key);
|
|
if (status != kStatus_Success) {
|
|
LOG_ERR("Transfer could not start");
|
|
rtio_iodev_sqe_err(txn_head, -EIO);
|
|
}
|
|
}
|
|
|
|
static void spi_mcux_iodev_next(const struct device *dev, bool completion)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
k_spinlock_key_t key = spi_spin_lock(dev);
|
|
|
|
if (!completion && data->txn_curr != NULL) {
|
|
spi_spin_unlock(dev, key);
|
|
return;
|
|
}
|
|
|
|
struct rtio_mpsc_node *next = rtio_mpsc_pop(&data->iodev.iodev_sq);
|
|
|
|
if (next != NULL) {
|
|
struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q);
|
|
|
|
data->txn_head = next_sqe;
|
|
data->txn_curr = next_sqe;
|
|
} else {
|
|
data->txn_head = NULL;
|
|
data->txn_curr = NULL;
|
|
}
|
|
|
|
spi_spin_unlock(dev, key);
|
|
|
|
if (data->txn_curr != NULL) {
|
|
struct spi_dt_spec *spi_dt_spec = data->txn_curr->sqe.iodev->data;
|
|
struct spi_config *spi_cfg = &spi_dt_spec->config;
|
|
|
|
spi_mcux_configure(dev, spi_cfg);
|
|
spi_context_cs_control(&data->ctx, true);
|
|
spi_mcux_iodev_start(dev);
|
|
}
|
|
}
|
|
|
|
static void spi_mcux_iodev_submit(const struct device *dev,
|
|
struct rtio_iodev_sqe *iodev_sqe)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
rtio_mpsc_push(&data->iodev.iodev_sq, &iodev_sqe->q);
|
|
spi_mcux_iodev_next(dev, false);
|
|
}
|
|
|
|
static void spi_mcux_iodev_complete(const struct device *dev, int status)
|
|
{
|
|
struct spi_mcux_data *data = dev->data;
|
|
|
|
if (data->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) {
|
|
data->txn_curr = rtio_txn_next(data->txn_curr);
|
|
spi_mcux_iodev_start(dev);
|
|
} else {
|
|
struct rtio_iodev_sqe *txn_head = data->txn_head;
|
|
|
|
spi_context_cs_control(&data->ctx, false);
|
|
spi_mcux_iodev_next(dev, true);
|
|
rtio_iodev_sqe_ok(txn_head, status);
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
|
|
static const struct spi_driver_api spi_mcux_driver_api = {
|
|
.transceive = spi_mcux_transceive,
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
.transceive_async = spi_mcux_transceive_async,
|
|
#endif
|
|
#ifdef CONFIG_SPI_RTIO
|
|
.iodev_submit = spi_mcux_iodev_submit,
|
|
#endif
|
|
.release = spi_mcux_release,
|
|
};
|
|
|
|
|
|
#define SPI_MCUX_RTIO_DEFINE(n) RTIO_DEFINE(spi_mcux_rtio_##n, CONFIG_SPI_MCUX_RTIO_SQ_SIZE, \
|
|
CONFIG_SPI_MCUX_RTIO_SQ_SIZE)
|
|
|
|
#ifdef CONFIG_SPI_MCUX_LPSPI_DMA
|
|
#define SPI_DMA_CHANNELS(n) \
|
|
IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, tx), \
|
|
( \
|
|
.dma_tx = { \
|
|
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \
|
|
.channel = \
|
|
DT_INST_DMAS_CELL_BY_NAME(n, tx, mux), \
|
|
.dma_cfg = { \
|
|
.channel_direction = MEMORY_TO_PERIPHERAL, \
|
|
.dma_callback = spi_mcux_dma_callback, \
|
|
.source_data_size = 1, \
|
|
.dest_data_size = 1, \
|
|
.block_count = 1, \
|
|
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, tx, source) \
|
|
} \
|
|
}, \
|
|
)) \
|
|
IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, rx), \
|
|
( \
|
|
.dma_rx = { \
|
|
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \
|
|
.channel = \
|
|
DT_INST_DMAS_CELL_BY_NAME(n, rx, mux), \
|
|
.dma_cfg = { \
|
|
.channel_direction = PERIPHERAL_TO_MEMORY, \
|
|
.dma_callback = spi_mcux_dma_callback, \
|
|
.source_data_size = 1, \
|
|
.dest_data_size = 1, \
|
|
.block_count = 1, \
|
|
.dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, rx, source) \
|
|
} \
|
|
}, \
|
|
))
|
|
#else
|
|
#define SPI_DMA_CHANNELS(n)
|
|
#endif /* CONFIG_SPI_MCUX_LPSPI_DMA */
|
|
|
|
#define SPI_MCUX_LPSPI_INIT(n) \
|
|
PINCTRL_DT_INST_DEFINE(n); \
|
|
COND_CODE_1(CONFIG_SPI_RTIO, (SPI_MCUX_RTIO_DEFINE(n)), ()); \
|
|
\
|
|
static void spi_mcux_config_func_##n(const struct device *dev); \
|
|
\
|
|
static const struct spi_mcux_config spi_mcux_config_##n = { \
|
|
.base = (LPSPI_Type *) DT_INST_REG_ADDR(n), \
|
|
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
|
|
.clock_subsys = \
|
|
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
|
|
.irq_config_func = spi_mcux_config_func_##n, \
|
|
.pcs_sck_delay = UTIL_AND( \
|
|
DT_INST_NODE_HAS_PROP(n, pcs_sck_delay), \
|
|
DT_INST_PROP(n, pcs_sck_delay)), \
|
|
.sck_pcs_delay = UTIL_AND( \
|
|
DT_INST_NODE_HAS_PROP(n, sck_pcs_delay), \
|
|
DT_INST_PROP(n, sck_pcs_delay)), \
|
|
.transfer_delay = UTIL_AND( \
|
|
DT_INST_NODE_HAS_PROP(n, transfer_delay), \
|
|
DT_INST_PROP(n, transfer_delay)), \
|
|
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
|
|
.data_pin_config = DT_INST_ENUM_IDX(n, data_pin_config),\
|
|
}; \
|
|
\
|
|
static struct spi_mcux_data spi_mcux_data_##n = { \
|
|
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx), \
|
|
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx), \
|
|
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
|
|
SPI_DMA_CHANNELS(n) \
|
|
IF_ENABLED(CONFIG_SPI_RTIO, \
|
|
(.r = &spi_mcux_rtio_##n,)) \
|
|
\
|
|
}; \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(n, &spi_mcux_init, NULL, \
|
|
&spi_mcux_data_##n, \
|
|
&spi_mcux_config_##n, POST_KERNEL, \
|
|
CONFIG_SPI_INIT_PRIORITY, \
|
|
&spi_mcux_driver_api); \
|
|
\
|
|
static void spi_mcux_config_func_##n(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
|
|
spi_mcux_isr, DEVICE_DT_INST_GET(n), 0); \
|
|
\
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
}
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_LPSPI_INIT)
|