zephyr/drivers/sensor/default_rtio_sensor.c

571 lines
17 KiB
C

/*
* Copyright (c) 2023 Google LLC.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/dsp/types.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(sensor_compat, CONFIG_SENSOR_LOG_LEVEL);
/*
* Ensure that the size of the generic header aligns with the sensor channel enum. If it doesn't,
* then cores that require aligned memory access will fail to read channel[0].
*/
BUILD_ASSERT((sizeof(struct sensor_data_generic_header) % sizeof(enum sensor_channel)) == 0);
static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe);
static void sensor_iodev_submit(struct rtio_iodev_sqe *iodev_sqe)
{
const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data;
const struct device *dev = cfg->sensor;
const struct sensor_driver_api *api = dev->api;
if (api->submit != NULL) {
api->submit(dev, iodev_sqe);
} else if (!cfg->is_streaming) {
sensor_submit_fallback(dev, iodev_sqe);
} else {
rtio_iodev_sqe_err(iodev_sqe, -ENOTSUP);
}
}
const struct rtio_iodev_api __sensor_iodev_api = {
.submit = sensor_iodev_submit,
};
/**
* @brief Compute the number of samples needed for the given channels
*
* @param[in] channels Array of channels requested
* @param[in] num_channels Number of channels on the @p channels array
* @return The number of samples required to read the given channels
*/
static inline int compute_num_samples(const enum sensor_channel *channels, size_t num_channels)
{
int num_samples = 0;
for (size_t i = 0; i < num_channels; ++i) {
num_samples += SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1;
}
return num_samples;
}
/**
* @brief Compute the required header size
*
* This function takes into account alignment of the q31 values that will follow the header.
*
* @param[in] num_output_samples The number of samples to represent
* @return The number of bytes needed for this sample frame's header
*/
static inline uint32_t compute_header_size(int num_output_samples)
{
uint32_t size = sizeof(struct sensor_data_generic_header) +
(num_output_samples * sizeof(enum sensor_channel));
return (size + 3) & ~0x3;
}
/**
* @brief Compute the minimum number of bytes needed
*
* @param[in] num_output_samples The number of samples to represent
* @return The number of bytes needed for this sample frame
*/
static inline uint32_t compute_min_buf_len(int num_output_samples)
{
return compute_header_size(num_output_samples) + (num_output_samples * sizeof(q31_t));
}
/**
* @brief Checks if the header already contains a given channel
*
* @param[in] header The header to scan
* @param[in] channel The channel to search for
* @param[in] num_channels The number of valid channels in the header so far
* @return Index of the @p channel if found or negative if not found
*/
static inline int check_header_contains_channel(const struct sensor_data_generic_header *header,
enum sensor_channel channel, int num_channels)
{
__ASSERT_NO_MSG(!SENSOR_CHANNEL_3_AXIS(channel));
for (int i = 0; i < num_channels; ++i) {
if (header->channels[i] == channel) {
return i;
}
}
return -1;
}
/**
* @brief Fallback function for retrofiting old drivers to rtio
*
* @param[in] dev The sensor device to read
* @param[in] iodev_sqe The read submission queue event
*/
static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
{
const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data;
const enum sensor_channel *const channels = cfg->channels;
const int num_output_samples = compute_num_samples(channels, cfg->count);
uint32_t min_buf_len = compute_min_buf_len(num_output_samples);
uint64_t timestamp_ns = k_ticks_to_ns_floor64(k_uptime_ticks());
int rc = sensor_sample_fetch(dev);
uint8_t *buf;
uint32_t buf_len;
/* Check that the fetch succeeded */
if (rc != 0) {
LOG_WRN("Failed to fetch samples");
rtio_iodev_sqe_err(iodev_sqe, rc);
return;
}
/* Get the buffer for the frame, it may be allocated dynamically by the rtio context */
rc = rtio_sqe_rx_buf(iodev_sqe, min_buf_len, min_buf_len, &buf, &buf_len);
if (rc != 0) {
LOG_WRN("Failed to get a read buffer of size %u bytes", min_buf_len);
rtio_iodev_sqe_err(iodev_sqe, rc);
return;
}
/* Set the timestamp and num_channels */
struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buf;
header->timestamp_ns = timestamp_ns;
header->num_channels = num_output_samples;
header->shift = 0;
q31_t *q = (q31_t *)(buf + compute_header_size(num_output_samples));
/* Populate values, update shift, and set channels */
for (size_t i = 0, sample_idx = 0; i < cfg->count; ++i) {
struct sensor_value value[3];
const int num_samples = SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1;
/* Get the current channel requested by the user */
rc = sensor_channel_get(dev, channels[i], value);
if (num_samples == 3) {
header->channels[sample_idx++] =
rc == 0 ? channels[i] - 3 : SENSOR_CHAN_MAX;
header->channels[sample_idx++] =
rc == 0 ? channels[i] - 2 : SENSOR_CHAN_MAX;
header->channels[sample_idx++] =
rc == 0 ? channels[i] - 1 : SENSOR_CHAN_MAX;
} else {
header->channels[sample_idx++] = rc == 0 ? channels[i] : SENSOR_CHAN_MAX;
}
if (rc != 0) {
LOG_DBG("Failed to get channel %d, skipping", channels[i]);
continue;
}
/* Get the largest absolute value reading to set the scale for the channel */
uint32_t header_scale = 0;
for (int sample = 0; sample < num_samples; ++sample) {
/*
* The scale is the ceil(abs(sample)).
* Since we are using fractional values, it's easier to assume that .val2
* is non 0 and convert this to abs(sample.val1) + 1 (removing a branch).
* Since it's possible that val1 (int32_t) is saturated (INT32_MAX) we need
* to upcast it to 64 bit int first, then take the abs() of that 64 bit
* int before we '+ 1'. Once that's done, we can safely cast back down
* to uint32_t because the min value is 0 and max is INT32_MAX + 1 which
* is less than UINT32_MAX.
*/
uint32_t scale = (uint32_t)llabs((int64_t)value[sample].val1) + 1;
header_scale = MAX(header_scale, scale);
}
int8_t new_shift = ilog2(header_scale - 1) + 1;
/* Reset sample_idx */
sample_idx -= num_samples;
if (header->shift < new_shift) {
/*
* Shift was updated, need to convert all the existing q values. This could
* be optimized by calling zdsp_scale_q31() but that would force a
* dependency between sensors and the zDSP subsystem.
*/
for (int q_idx = 0; q_idx < sample_idx; ++q_idx) {
q[q_idx] = q[q_idx] >> (new_shift - header->shift);
}
header->shift = new_shift;
}
/*
* Spread the q31 values. This is needed because some channels are 3D. If
* the user specified one of those then num_samples will be 3; and we need to
* produce 3 separate readings.
*/
for (int sample = 0; sample < num_samples; ++sample) {
/* Check if the channel is already in the buffer */
int prev_computed_value_idx = check_header_contains_channel(
header, header->channels[sample_idx + sample], sample_idx + sample);
if (prev_computed_value_idx >= 0 &&
prev_computed_value_idx != sample_idx + sample) {
LOG_DBG("value[%d] previously computed at q[%d]@%p", sample,
prev_computed_value_idx,
(void *)&q[prev_computed_value_idx]);
q[sample_idx + sample] = q[prev_computed_value_idx];
continue;
}
/* Convert the value to micro-units */
int64_t value_u = sensor_value_to_micro(&value[sample]);
/* Convert to q31 using the shift */
q[sample_idx + sample] =
((value_u * ((INT64_C(1) << 31) - 1)) / 1000000) >> header->shift;
LOG_DBG("value[%d]=%s%d.%06d, q[%d]@%p=%d", sample, value_u < 0 ? "-" : "",
abs((int)value[sample].val1), abs((int)value[sample].val2),
(int)(sample_idx + sample), (void *)&q[sample_idx + sample],
q[sample_idx + sample]);
}
sample_idx += num_samples;
}
LOG_DBG("Total channels in header: %" PRIu32, header->num_channels);
rtio_iodev_sqe_ok(iodev_sqe, 0);
}
void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb)
{
void *userdata = NULL;
uint8_t *buf = NULL;
uint32_t buf_len = 0;
int rc;
/* Wait for a CQE */
struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx);
/* Cache the data from the CQE */
rc = cqe->result;
userdata = cqe->userdata;
rtio_cqe_get_mempool_buffer(ctx, cqe, &buf, &buf_len);
/* Release the CQE */
rtio_cqe_release(ctx, cqe);
/* Call the callback */
cb(rc, buf, buf_len, userdata);
/* Release the memory */
rtio_release_buffer(ctx, buf, buf_len);
}
/**
* @brief Default decoder get frame count
*
* Default reader can only ever service a single frame at a time.
*
* @param[in] buffer The data buffer to parse
* @param[in] channel The channel to get the count for
* @param[in] channel_idx The index of the channel
* @param[out] frame_count The number of frames in the buffer (always 1)
* @return 0 in all cases
*/
static int get_frame_count(const uint8_t *buffer, enum sensor_channel channel, size_t channel_idx,
uint16_t *frame_count)
{
struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buffer;
size_t count = 0;
switch (channel) {
case SENSOR_CHAN_ACCEL_XYZ:
channel = SENSOR_CHAN_ACCEL_X;
break;
case SENSOR_CHAN_GYRO_XYZ:
channel = SENSOR_CHAN_GYRO_X;
break;
case SENSOR_CHAN_MAGN_XYZ:
channel = SENSOR_CHAN_MAGN_X;
break;
default:
break;
}
for (size_t i = 0; i < header->num_channels; ++i) {
if (header->channels[i] == channel) {
if (channel_idx == count) {
*frame_count = 1;
return 0;
}
++count;
}
}
return -ENOTSUP;
}
int sensor_natively_supported_channel_size_info(enum sensor_channel channel, size_t *base_size,
size_t *frame_size)
{
__ASSERT_NO_MSG(base_size != NULL);
__ASSERT_NO_MSG(frame_size != NULL);
switch (channel) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
case SENSOR_CHAN_POS_DX:
case SENSOR_CHAN_POS_DY:
case SENSOR_CHAN_POS_DZ:
*base_size = sizeof(struct sensor_three_axis_data);
*frame_size = sizeof(struct sensor_three_axis_sample_data);
return 0;
case SENSOR_CHAN_DIE_TEMP:
case SENSOR_CHAN_AMBIENT_TEMP:
case SENSOR_CHAN_PRESS:
case SENSOR_CHAN_HUMIDITY:
case SENSOR_CHAN_LIGHT:
case SENSOR_CHAN_IR:
case SENSOR_CHAN_RED:
case SENSOR_CHAN_GREEN:
case SENSOR_CHAN_BLUE:
case SENSOR_CHAN_ALTITUDE:
case SENSOR_CHAN_PM_1_0:
case SENSOR_CHAN_PM_2_5:
case SENSOR_CHAN_PM_10:
case SENSOR_CHAN_DISTANCE:
case SENSOR_CHAN_CO2:
case SENSOR_CHAN_VOC:
case SENSOR_CHAN_GAS_RES:
case SENSOR_CHAN_VOLTAGE:
case SENSOR_CHAN_CURRENT:
case SENSOR_CHAN_POWER:
case SENSOR_CHAN_RESISTANCE:
case SENSOR_CHAN_ROTATION:
case SENSOR_CHAN_RPM:
case SENSOR_CHAN_GAUGE_VOLTAGE:
case SENSOR_CHAN_GAUGE_AVG_CURRENT:
case SENSOR_CHAN_GAUGE_STDBY_CURRENT:
case SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT:
case SENSOR_CHAN_GAUGE_TEMP:
case SENSOR_CHAN_GAUGE_STATE_OF_CHARGE:
case SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY:
case SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY:
case SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY:
case SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY:
case SENSOR_CHAN_GAUGE_AVG_POWER:
case SENSOR_CHAN_GAUGE_STATE_OF_HEALTH:
case SENSOR_CHAN_GAUGE_TIME_TO_EMPTY:
case SENSOR_CHAN_GAUGE_TIME_TO_FULL:
case SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE:
case SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE:
case SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT:
*base_size = sizeof(struct sensor_q31_data);
*frame_size = sizeof(struct sensor_q31_sample_data);
return 0;
case SENSOR_CHAN_PROX:
*base_size = sizeof(struct sensor_byte_data);
*frame_size = sizeof(struct sensor_byte_sample_data);
return 0;
case SENSOR_CHAN_GAUGE_CYCLE_COUNT:
*base_size = sizeof(struct sensor_uint64_data);
*frame_size = sizeof(struct sensor_uint64_sample_data);
return 0;
default:
return -ENOTSUP;
}
}
static int get_q31_value(const struct sensor_data_generic_header *header, const q31_t *values,
enum sensor_channel channel, size_t channel_idx, q31_t *out)
{
size_t count = 0;
for (size_t i = 0; i < header->num_channels; ++i) {
if (channel != header->channels[i]) {
continue;
}
if (count == channel_idx) {
*out = values[i];
return 0;
}
++count;
}
return -EINVAL;
}
static int decode_three_axis(const struct sensor_data_generic_header *header, const q31_t *values,
struct sensor_three_axis_data *data_out, enum sensor_channel x,
enum sensor_channel y, enum sensor_channel z, size_t channel_idx)
{
int rc;
data_out->header.base_timestamp_ns = header->timestamp_ns;
data_out->header.reading_count = 1;
data_out->shift = header->shift;
data_out->readings[0].timestamp_delta = 0;
rc = get_q31_value(header, values, x, channel_idx, &data_out->readings[0].values[0]);
if (rc < 0) {
return rc;
}
rc = get_q31_value(header, values, y, channel_idx, &data_out->readings[0].values[1]);
if (rc < 0) {
return rc;
}
rc = get_q31_value(header, values, z, channel_idx, &data_out->readings[0].values[2]);
if (rc < 0) {
return rc;
}
return 1;
}
static int decode_q31(const struct sensor_data_generic_header *header, const q31_t *values,
struct sensor_q31_data *data_out, enum sensor_channel channel,
size_t channel_idx)
{
int rc;
data_out->header.base_timestamp_ns = header->timestamp_ns;
data_out->header.reading_count = 1;
data_out->shift = header->shift;
data_out->readings[0].timestamp_delta = 0;
rc = get_q31_value(header, values, channel, channel_idx, &data_out->readings[0].value);
if (rc < 0) {
return rc;
}
return 1;
}
/**
* @brief Decode up to N samples from the buffer
*
* This function will never wrap frames. If 1 channel is available in the current frame and
* @p max_count is 2, only 1 channel will be decoded and the frame iterator will be modified
* so that the next call to decode will begin at the next frame.
*
* @param[in] buffer The buffer provided on the :c:struct:`rtio` context
* @param[in] channel The channel to decode
* @param[in] channel_idx The index of the channel
* @param[in,out] fit The current frame iterator
* @param[in] max_count The maximum number of channels to decode.
* @param[out] data_out The decoded data
* @return 0 no more samples to decode
* @return >0 the number of decoded frames
* @return <0 on error
*/
static int decode(const uint8_t *buffer, enum sensor_channel channel, size_t channel_idx,
uint32_t *fit, uint16_t max_count, void *data_out)
{
const struct sensor_data_generic_header *header =
(const struct sensor_data_generic_header *)buffer;
const q31_t *q =
(const q31_t *)(buffer + sizeof(struct sensor_data_generic_header) +
header->num_channels * sizeof(enum sensor_channel));
int count = 0;
if (*fit != 0 || max_count < 1) {
return -EINVAL;
}
/* Check for 3d channel mappings */
switch (channel) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_ACCEL_X,
SENSOR_CHAN_ACCEL_Y, SENSOR_CHAN_ACCEL_Z, channel_idx);
break;
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_GYRO_X,
SENSOR_CHAN_GYRO_Y, SENSOR_CHAN_GYRO_Z, channel_idx);
break;
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_MAGN_X,
SENSOR_CHAN_MAGN_Y, SENSOR_CHAN_MAGN_Z, channel_idx);
break;
case SENSOR_CHAN_POS_DX:
case SENSOR_CHAN_POS_DY:
case SENSOR_CHAN_POS_DZ:
count = decode_three_axis(header, q, data_out, SENSOR_CHAN_POS_DX,
SENSOR_CHAN_POS_DY, SENSOR_CHAN_POS_DZ, channel_idx);
break;
case SENSOR_CHAN_DIE_TEMP:
case SENSOR_CHAN_AMBIENT_TEMP:
case SENSOR_CHAN_PRESS:
case SENSOR_CHAN_HUMIDITY:
case SENSOR_CHAN_LIGHT:
case SENSOR_CHAN_IR:
case SENSOR_CHAN_RED:
case SENSOR_CHAN_GREEN:
case SENSOR_CHAN_BLUE:
case SENSOR_CHAN_ALTITUDE:
case SENSOR_CHAN_PM_1_0:
case SENSOR_CHAN_PM_2_5:
case SENSOR_CHAN_PM_10:
case SENSOR_CHAN_DISTANCE:
case SENSOR_CHAN_CO2:
case SENSOR_CHAN_VOC:
case SENSOR_CHAN_GAS_RES:
case SENSOR_CHAN_VOLTAGE:
case SENSOR_CHAN_CURRENT:
case SENSOR_CHAN_POWER:
case SENSOR_CHAN_RESISTANCE:
case SENSOR_CHAN_ROTATION:
case SENSOR_CHAN_RPM:
case SENSOR_CHAN_GAUGE_VOLTAGE:
case SENSOR_CHAN_GAUGE_AVG_CURRENT:
case SENSOR_CHAN_GAUGE_STDBY_CURRENT:
case SENSOR_CHAN_GAUGE_MAX_LOAD_CURRENT:
case SENSOR_CHAN_GAUGE_TEMP:
case SENSOR_CHAN_GAUGE_STATE_OF_CHARGE:
case SENSOR_CHAN_GAUGE_FULL_CHARGE_CAPACITY:
case SENSOR_CHAN_GAUGE_REMAINING_CHARGE_CAPACITY:
case SENSOR_CHAN_GAUGE_NOM_AVAIL_CAPACITY:
case SENSOR_CHAN_GAUGE_FULL_AVAIL_CAPACITY:
case SENSOR_CHAN_GAUGE_AVG_POWER:
case SENSOR_CHAN_GAUGE_STATE_OF_HEALTH:
case SENSOR_CHAN_GAUGE_TIME_TO_EMPTY:
case SENSOR_CHAN_GAUGE_TIME_TO_FULL:
case SENSOR_CHAN_GAUGE_DESIGN_VOLTAGE:
case SENSOR_CHAN_GAUGE_DESIRED_VOLTAGE:
case SENSOR_CHAN_GAUGE_DESIRED_CHARGING_CURRENT:
count = decode_q31(header, q, data_out, channel, channel_idx);
break;
default:
break;
}
if (count > 0) {
*fit = 1;
}
return count;
}
const struct sensor_decoder_api __sensor_default_decoder = {
.get_frame_count = get_frame_count,
.get_size_info = sensor_natively_supported_channel_size_info,
.decode = decode,
};