zephyr/drivers/clock_control/clock_stm32_ll_common.c

846 lines
22 KiB
C

/*
* Copyright (c) 2017-2022 Linaro Limited.
* Copyright (c) 2017 RnDity Sp. z o.o.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_system.h>
#include <stm32_ll_utils.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "clock_stm32_ll_common.h"
#include "clock_stm32_ll_mco.h"
#include "stm32_hsem.h"
/* Macros to fill up prescaler values */
#define z_hsi_divider(v) LL_RCC_HSI_DIV_ ## v
#define hsi_divider(v) z_hsi_divider(v)
#define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) fn_ahb_prescaler(v)
#define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) fn_apb1_prescaler(v)
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
#define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) fn_apb2_prescaler(v)
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK4_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB4Prescaler
#elif DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK3_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHB3Prescaler
#else
#define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ
#define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler
#endif
#if defined(RCC_PLLCFGR_PLLPEN)
#define RCC_PLLP_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLPEN)
#else
#define RCC_PLLP_ENABLE()
#endif /* RCC_PLLCFGR_PLLPEN */
#if defined(RCC_PLLCFGR_PLLQEN)
#define RCC_PLLQ_ENABLE() SET_BIT(RCC->PLLCFGR, RCC_PLLCFGR_PLLQEN)
#else
#define RCC_PLLQ_ENABLE()
#endif /* RCC_PLLCFGR_PLLQEN */
/**
* @brief Return frequency for pll with 2 dividers and a multiplier
*/
__unused
static uint32_t get_pll_div_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return pllsrc_freq / pllm_div * plln_mul / pllout_div;
}
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
__unused
static uint32_t get_msi_frequency(void)
{
#if defined(STM32_MSI_ENABLED)
#if !defined(LL_RCC_MSIRANGESEL_RUN)
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSI_GetRange());
#else
return __LL_RCC_CALC_MSI_FREQ(LL_RCC_MSIRANGESEL_RUN,
LL_RCC_MSI_GetRange());
#endif
#endif
return 0;
}
/** @brief Verifies clock is part of active clock configuration */
__unused
static int enabled_clock(uint32_t src_clk)
{
int r = 0;
switch (src_clk) {
#if defined(STM32_SRC_SYSCLK)
case STM32_SRC_SYSCLK:
break;
#endif /* STM32_SRC_SYSCLK */
#if defined(STM32_SRC_PCLK)
case STM32_SRC_PCLK:
break;
#endif /* STM32_SRC_PCLK */
#if defined(STM32_SRC_HSE)
case STM32_SRC_HSE:
if (!IS_ENABLED(STM32_HSE_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSE */
#if defined(STM32_SRC_HSI)
case STM32_SRC_HSI:
if (!IS_ENABLED(STM32_HSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI */
#if defined(STM32_SRC_LSE)
case STM32_SRC_LSE:
if (!IS_ENABLED(STM32_LSE_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_LSE */
#if defined(STM32_SRC_LSI)
case STM32_SRC_LSI:
if (!IS_ENABLED(STM32_LSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_LSI */
#if defined(STM32_SRC_HSI14)
case STM32_SRC_HSI14:
if (!IS_ENABLED(STM32_HSI14_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI14 */
#if defined(STM32_SRC_HSI48)
case STM32_SRC_HSI48:
if (!IS_ENABLED(STM32_HSI48_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_HSI48 */
#if defined(STM32_SRC_MSI)
case STM32_SRC_MSI:
if (!IS_ENABLED(STM32_MSI_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_MSI */
#if defined(STM32_SRC_PLLCLK)
case STM32_SRC_PLLCLK:
if (!IS_ENABLED(STM32_PLL_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLLCLK */
#if defined(STM32_SRC_PLL_P)
case STM32_SRC_PLL_P:
if (!IS_ENABLED(STM32_PLL_P_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_P */
#if defined(STM32_SRC_PLL_Q)
case STM32_SRC_PLL_Q:
if (!IS_ENABLED(STM32_PLL_Q_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_Q */
#if defined(STM32_SRC_PLL_R)
case STM32_SRC_PLL_R:
if (!IS_ENABLED(STM32_PLL_R_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLL_R */
#if defined(STM32_SRC_PLLI2S_R)
case STM32_SRC_PLLI2S_R:
if (!IS_ENABLED(STM32_PLLI2S_R_ENABLED)) {
r = -ENOTSUP;
}
break;
#endif /* STM32_SRC_PLLI2S_R */
default:
return -ENOTSUP;
}
return r;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to change a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
#if defined(STM32_SRC_SYSCLK)
/* At least one alt src clock available */
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
if (pclken->enr == NO_SEL) {
/* Domain clock is fixed. Nothing to set. Exit */
return 0;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
return 0;
#else
/* No src clock available: Not supported */
return -ENOTSUP;
#endif
}
static int stm32_clock_control_get_subsys_rate(const struct device *clock,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
#elif defined(STM32_CLOCK_BUS_APB2)
/* APB2 bus exists, but w/o dedicated prescaler */
uint32_t apb2_clock = apb1_clock;
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
uint32_t ahb3_clock = get_bus_clock(ahb_clock * STM32_CPU1_PRESCALER,
STM32_AHB3_PRESCALER);
#elif defined(STM32_CLOCK_BUS_AHB3)
/* AHB3 bus exists, but w/o dedicated prescaler */
uint32_t ahb3_clock = ahb_clock;
#endif
#if defined(STM32_SRC_PCLK)
if (pclken->bus == STM32_SRC_PCLK) {
/* STM32_SRC_PCLK can't be used to request a subsys freq */
/* Use STM32_CLOCK_BUS_FOO instead. */
return -ENOTSUP;
}
#endif
ARG_UNUSED(clock);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
#if defined(STM32_CLOCK_BUS_AHB2)
case STM32_CLOCK_BUS_AHB2:
#endif
#if defined(STM32_CLOCK_BUS_IOP)
case STM32_CLOCK_BUS_IOP:
#endif
*rate = ahb_clock;
break;
#if defined(STM32_CLOCK_BUS_AHB3)
case STM32_CLOCK_BUS_AHB3:
*rate = ahb3_clock;
break;
#endif
case STM32_CLOCK_BUS_APB1:
#if defined(STM32_CLOCK_BUS_APB1_2)
case STM32_CLOCK_BUS_APB1_2:
#endif
*rate = apb1_clock;
break;
#if defined(STM32_CLOCK_BUS_APB2)
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
#endif
#if defined(STM32_CLOCK_BUS_APB3)
case STM32_CLOCK_BUS_APB3:
/* STM32WL: AHB3 and APB3 share the same clock and prescaler. */
*rate = ahb3_clock;
break;
#endif
#if defined(STM32_SRC_SYSCLK)
case STM32_SRC_SYSCLK:
*rate = SystemCoreClock * STM32_CORE_PRESCALER;
break;
#endif
#if defined(STM32_SRC_PLLCLK) & defined(STM32_SYSCLK_SRC_PLL)
case STM32_SRC_PLLCLK:
if (get_pllout_frequency() == 0) {
return -EIO;
}
*rate = get_pllout_frequency();
break;
#endif
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
case STM32_SRC_PLL_P:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
case STM32_SRC_PLL_Q:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLL_R) & STM32_PLL_R_ENABLED
case STM32_SRC_PLL_R:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif
#if defined(STM32_SRC_PLLI2S_R) & STM32_PLLI2S_ENABLED
case STM32_SRC_PLLI2S_R:
*rate = get_pll_div_frequency(get_pllsrc_frequency(),
STM32_PLLI2S_M_DIVISOR,
STM32_PLLI2S_N_MULTIPLIER,
STM32_PLLI2S_R_DIVISOR);
break;
#endif /* STM32_SRC_PLLI2S_R */
/* PLLSAI1x not supported yet */
/* PLLSAI2x not supported yet */
#if defined(STM32_SRC_LSE)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif
#if defined(STM32_SRC_LSI)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif
#if defined(STM32_SRC_HSI)
case STM32_SRC_HSI:
*rate = STM32_HSI_FREQ;
break;
#endif
#if defined(STM32_SRC_MSI)
case STM32_SRC_MSI:
*rate = get_msi_frequency();
break;
#endif
#if defined(STM32_SRC_HSE)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
default:
return -ENOTSUP;
}
return 0;
}
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) {
/* Gated clocks */
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
== pclken->enr) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
} else {
/* Domain clock sources */
if (enabled_clock(pclken->bus) == 0) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
}
}
static struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.get_status = stm32_clock_control_get_status,
.configure = stm32_clock_control_configure,
};
/*
* Unconditionally switch the system clock source to HSI.
*/
__unused
static void stm32_clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
}
__unused
static void set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED)
/*
* Case of chain-loaded applications:
* Switch to HSI and disable the PLL before configuration.
* (Switching to HSI makes sure we have a SYSCLK source in
* case we're currently running from the PLL we're about to
* turn off and reconfigure.)
*
*/
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
stm32_clock_switch_to_hsi();
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
}
LL_RCC_PLL_Disable();
#endif
#if defined(STM32_PLL2_ENABLED)
/*
* Disable PLL2 after switching to HSI for SysClk
* and disabling PLL, but before enabling PLL again,
* since PLL source can be PLL2.
*/
LL_RCC_PLL2_Disable();
config_pll2();
/* Enable PLL2 */
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
/* Wait for PLL2 ready */
}
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL_ENABLED)
#if defined(STM32_SRC_PLL_P) & STM32_PLL_P_ENABLED
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLP, pllp(STM32_PLL_P_DIVISOR));
RCC_PLLP_ENABLE();
#endif
#if defined(STM32_SRC_PLL_Q) & STM32_PLL_Q_ENABLED
MODIFY_REG(RCC->PLLCFGR, RCC_PLLCFGR_PLLQ, pllq(STM32_PLL_Q_DIVISOR));
RCC_PLLQ_ENABLE();
#endif
config_pll_sysclock();
/* Enable PLL */
LL_RCC_PLL_Enable();
while (LL_RCC_PLL_IsReady() != 1U) {
/* Wait for PLL ready */
}
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLLI2S_ENABLED)
config_plli2s();
/* Enable PLL */
LL_RCC_PLLI2S_Enable();
while (LL_RCC_PLLI2S_IsReady() != 1U) {
/* Wait for PLL ready */
}
#endif /* STM32_PLLI2S_ENABLED */
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
#if defined(STM32_HSE_BYPASS)
/* Check if need to enable HSE bypass feature or not */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
#endif
#if STM32_HSE_TCXO
LL_RCC_HSE_EnableTcxo();
#endif
#if STM32_HSE_DIV2
LL_RCC_HSE_EnableDiv2();
#endif
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
/* Check if we need to enable HSE clock security system or not */
#if STM32_HSE_CSS
z_arm_nmi_set_handler(HAL_RCC_NMI_IRQHandler);
LL_RCC_HSE_EnableCSS();
#endif /* STM32_HSE_CSS */
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
#if STM32_HSI_DIV_ENABLED
LL_RCC_SetHSIDiv(hsi_divider(STM32_HSI_DIVISOR));
#endif
}
#if defined(STM32_MSI_ENABLED)
if (IS_ENABLED(STM32_MSI_ENABLED)) {
/* Set MSI Range */
#if defined(RCC_CR_MSIRGSEL)
LL_RCC_MSI_EnableRangeSelection();
#endif /* RCC_CR_MSIRGSEL */
#if defined(CONFIG_SOC_SERIES_STM32L0X) || defined(CONFIG_SOC_SERIES_STM32L1X)
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_ICSCR_MSIRANGE_Pos);
#else
LL_RCC_MSI_SetRange(STM32_MSI_RANGE << RCC_CR_MSIRANGE_Pos);
#endif /* CONFIG_SOC_SERIES_STM32L0X || CONFIG_SOC_SERIES_STM32L1X */
#if STM32_MSI_PLL_MODE
/* Enable MSI hardware auto calibration */
LL_RCC_MSI_EnablePLLMode();
#endif
LL_RCC_MSI_SetCalibTrimming(0);
/* Enable MSI if not enabled */
if (LL_RCC_MSI_IsReady() != 1) {
/* Enable MSI */
LL_RCC_MSI_Enable();
while (LL_RCC_MSI_IsReady() != 1) {
/* Wait for MSI ready */
}
}
}
#endif /* STM32_MSI_ENABLED */
if (IS_ENABLED(STM32_LSI_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32WBX)
LL_RCC_LSI1_Enable();
while (LL_RCC_LSI1_IsReady() != 1) {
}
#else
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
#endif
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* LSE belongs to the back-up domain, enable access.*/
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP)
/* Set the DBP bit in the Power control register 1 (PWR_CR1) */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
#if STM32_LSE_DRIVING
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
#endif
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE Oscillator (32.768 kHz) */
LL_RCC_LSE_Enable();
while (!LL_RCC_LSE_IsReady()) {
/* Wait for LSE ready */
}
#ifdef RCC_BDCR_LSESYSEN
LL_RCC_LSE_EnablePropagation();
/* Wait till LSESYS is ready */
while (!LL_RCC_LSE_IsPropagationReady()) {
}
#endif /* RCC_BDCR_LSESYSEN */
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
}
#if defined(STM32_HSI14_ENABLED)
/* For all series with HSI 14 clock support */
if (IS_ENABLED(STM32_HSI14_ENABLED)) {
LL_RCC_HSI14_Enable();
while (LL_RCC_HSI14_IsReady() != 1) {
}
}
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_HSI48_ENABLED)
/* For all series with HSI 48 clock support */
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
#if defined(CONFIG_SOC_SERIES_STM32L0X)
/*
* HSI48 requires VREFINT (see RM0376 section 7.2.4).
* The SYSCFG is needed to control VREFINT, so clock it.
*/
LL_APB2_GRP1_EnableClock(LL_APB2_GRP1_PERIPH_SYSCFG);
LL_SYSCFG_VREFINT_EnableHSI48();
#endif /* CONFIG_SOC_SERIES_STM32L0X */
/*
* STM32WB: Lock the CLK48 HSEM and do not release to prevent
* M0 core to disable this clock (used for RNG on M0).
* No-op on other series.
*/
z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
#endif /* STM32_HSI48_ENABLED */
}
/**
* @brief Initialize clocks for the stm32
*
* This routine is called to enable and configure the clocks and PLL
* of the soc on the board. It depends on the board definition.
* This function is called on the startup and also to restore the config
* when exiting for low power mode.
*
* @param dev clock device struct
*
* @return 0
*/
int stm32_clock_control_init(const struct device *dev)
{
ARG_UNUSED(dev);
/* Some clocks would be activated by default */
config_enable_default_clocks();
#if defined(FLASH_ACR_LATENCY)
uint32_t old_flash_freq;
uint32_t new_flash_freq;
old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(),
GET_CURRENT_FLASH_PRESCALER());
new_flash_freq = RCC_CALC_FLASH_FREQ(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC,
STM32_FLASH_PRESCALER);
/* If HCLK increases, set flash latency before any clock setting */
if (old_flash_freq < new_flash_freq) {
LL_SetFlashLatency(new_flash_freq);
}
#endif /* FLASH_ACR_LATENCY */
/* Set up indiviual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
set_up_plls();
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_2);
} else {
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
}
#if STM32_SYSCLK_SRC_PLL
/* Set PLL as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL) {
}
#elif STM32_SYSCLK_SRC_HSE
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
#elif STM32_SYSCLK_SRC_MSI
/* Set MSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSI) {
}
#elif STM32_SYSCLK_SRC_HSI
stm32_clock_switch_to_hsi();
#endif /* STM32_SYSCLK_SRC_... */
if (DT_PROP(DT_NODELABEL(rcc), undershoot_prevention) &&
(STM32_CORE_PRESCALER == LL_RCC_SYSCLK_DIV_1) &&
(MHZ(80) < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC)) {
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER));
}
#if defined(FLASH_ACR_LATENCY)
/* If HCLK not increased, set flash latency after all clock setting */
if (old_flash_freq >= new_flash_freq) {
LL_SetFlashLatency(new_flash_freq);
}
#endif /* FLASH_ACR_LATENCY */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
/* Set bus prescalers prescaler */
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), apb2_prescaler)
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), cpu2_prescaler)
LL_C2_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CPU2_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb3_prescaler)
LL_RCC_SetAHB3Prescaler(ahb_prescaler(STM32_AHB3_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), ahb4_prescaler)
LL_RCC_SetAHB4Prescaler(ahb_prescaler(STM32_AHB4_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc12_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC12_PRESCALER));
#endif
#if DT_NODE_HAS_PROP(DT_NODELABEL(rcc), adc34_prescaler)
LL_RCC_SetADCClockSource(adc_prescaler(STM32_ADC34_PRESCALER));
#endif
/* configure MCO1/MCO2 based on Kconfig */
stm32_clock_control_mco_init();
return 0;
}
#if defined(STM32_HSE_CSS)
void __weak stm32_hse_css_callback(void) {}
/* Called by the HAL in response to an HSE CSS interrupt */
void HAL_RCC_CSSCallback(void)
{
stm32_hse_css_callback();
}
#endif
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
&stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);