zephyr/subsys/fs/nvs/nvs.c

847 lines
18 KiB
C

/* NVS: non volatile storage in flash
*
* Copyright (c) 2018 Laczen
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <flash.h>
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include <nvs/nvs.h>
#include <crc8.h>
#include "nvs_priv.h"
/* basic routines */
/* _nvs_al_size returns size aligned to fs->write_block_size */
static inline size_t _nvs_al_size(struct nvs_fs *fs, size_t len)
{
if (fs->write_block_size <= 1) {
return len;
}
return (len + (fs->write_block_size - 1)) & ~(fs->write_block_size - 1);
}
/* end basic routines */
/* flash routines */
/* basic aligned flash write to nvs address */
static int _nvs_flash_al_wrt(struct nvs_fs *fs, u32_t addr, const void *data,
size_t len)
{
const u8_t *data8 = (const u8_t *)data;
int rc = 0;
off_t offset;
size_t blen;
u8_t buf[fs->write_block_size];
if (!len) {
/* Nothing to write, avoid changing the flash protection */
return 0;
}
offset = fs->offset;
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
offset += addr & ADDR_OFFS_MASK;
rc = flash_write_protection_set(fs->flash_device, 0);
if (rc) {
/* flash protection set error */
return rc;
}
blen = len & ~(fs->write_block_size - 1);
if (blen > 0) {
rc = flash_write(fs->flash_device, offset, data8, blen);
if (rc) {
/* flash write error */
goto end;
}
len -= blen;
offset += blen;
data8 += blen;
}
if (len) {
memcpy(buf, data8, len);
(void)memset(buf + len, 0xff, fs->write_block_size - len);
rc = flash_write(fs->flash_device, offset, buf,
fs->write_block_size);
if (rc) {
/* flash write error */
goto end;
}
}
end:
(void) flash_write_protection_set(fs->flash_device, 1);
return rc;
}
/* basic flash read from nvs address */
static int _nvs_flash_rd(struct nvs_fs *fs, u32_t addr, void *data,
size_t len)
{
int rc;
off_t offset;
offset = fs->offset;
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
offset += addr & ADDR_OFFS_MASK;
rc = flash_read(fs->flash_device, offset, data, len);
return rc;
}
/* allocation entry write */
static int _nvs_flash_ate_wrt(struct nvs_fs *fs, const struct nvs_ate *entry)
{
int rc;
rc = _nvs_flash_al_wrt(fs, fs->ate_wra, entry,
sizeof(struct nvs_ate));
fs->ate_wra -= _nvs_al_size(fs, sizeof(struct nvs_ate));
return rc;
}
/* data write */
static int _nvs_flash_data_wrt(struct nvs_fs *fs, const void *data, size_t len)
{
int rc;
rc = _nvs_flash_al_wrt(fs, fs->data_wra, data, len);
fs->data_wra += _nvs_al_size(fs, len);
return rc;
}
/* flash ate read */
static int _nvs_flash_ate_rd(struct nvs_fs *fs, u32_t addr,
struct nvs_ate *entry)
{
return _nvs_flash_rd(fs, addr, entry, sizeof(struct nvs_ate));
}
/* end of basic flash routines */
/* advanced flash routines */
/* _nvs_flash_block_cmp compares the data in flash at addr to data
* in blocks of size NVS_BLOCK_SIZE aligned to fs->write_block_size
* returns 0 if equal, 1 if not equal, errcode if error
*/
static int _nvs_flash_block_cmp(struct nvs_fs *fs, u32_t addr, const void *data,
size_t len)
{
const u8_t *data8 = (const u8_t *)data;
int rc;
size_t bytes_to_cmp, block_size;
u8_t buf[NVS_BLOCK_SIZE];
block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1);
while (len) {
bytes_to_cmp = min(block_size, len);
rc = _nvs_flash_rd(fs, addr, buf, bytes_to_cmp);
if (rc) {
return rc;
}
rc = memcmp(data8, buf, bytes_to_cmp);
if (rc) {
return 1;
}
len -= bytes_to_cmp;
addr += bytes_to_cmp;
data8 += bytes_to_cmp;
}
return 0;
}
/* _nvs_flash_cmp_const compares the data in flash at addr to a constant
* value. returns 0 if all data in flash is equal to value, 1 if not equal,
* errcode if error
*/
static int _nvs_flash_cmp_const(struct nvs_fs *fs, u32_t addr, u8_t value,
size_t len)
{
int rc;
size_t bytes_to_cmp, block_size;
u8_t cmp[NVS_BLOCK_SIZE];
block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1);
(void)memset(cmp, value, block_size);
while (len) {
bytes_to_cmp = min(block_size, len);
rc = _nvs_flash_block_cmp(fs, addr, cmp, bytes_to_cmp);
if (rc) {
return rc;
}
len -= bytes_to_cmp;
addr += bytes_to_cmp;
}
return 0;
}
/* flash block move: move a block at addr to the current data write location
* and updates the data write location.
*/
static int _nvs_flash_block_move(struct nvs_fs *fs, u32_t addr, size_t len)
{
int rc;
size_t bytes_to_copy, block_size;
u8_t buf[NVS_BLOCK_SIZE];
block_size = NVS_BLOCK_SIZE & ~(fs->write_block_size - 1);
while (len) {
bytes_to_copy = min(block_size, len);
rc = _nvs_flash_rd(fs, addr, buf, bytes_to_copy);
if (rc) {
return rc;
}
rc = _nvs_flash_data_wrt(fs, buf, bytes_to_copy);
if (rc) {
return rc;
}
len -= bytes_to_copy;
addr += bytes_to_copy;
}
return 0;
}
/* erase a sector by first checking it is used and then erasing if required
* return 0 if OK, errorcode on error.
*/
static int _nvs_flash_erase_sector(struct nvs_fs *fs, u32_t addr)
{
int rc;
off_t offset;
addr &= ADDR_SECT_MASK;
rc = _nvs_flash_cmp_const(fs, addr, 0xff, fs->sector_size);
if (rc <= 0) {
/* flash error or empty sector */
return rc;
}
offset = fs->offset;
offset += fs->sector_size * (addr >> ADDR_SECT_SHIFT);
rc = flash_write_protection_set(fs->flash_device, 0);
if (rc) {
/* flash protection set error */
return rc;
}
SYS_LOG_DBG("Erasing flash at %"PRIx32", len %d",
offset, fs->sector_size);
rc = flash_erase(fs->flash_device, offset, fs->sector_size);
if (rc) {
/* flash erase error */
return rc;
}
(void) flash_write_protection_set(fs->flash_device, 1);
return 0;
}
/* crc update on allocation entry */
static void _nvs_ate_crc8_update(struct nvs_ate *entry)
{
u8_t crc8;
crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
entry->crc8 = crc8;
}
/* crc check on allocation entry
* returns 0 if OK, 1 on crc fail
*/
static int _nvs_ate_crc8_check(const struct nvs_ate *entry)
{
u8_t crc8;
crc8 = crc8_ccitt(0xff, entry, offsetof(struct nvs_ate, crc8));
if (crc8 == entry->crc8) {
return 0;
}
return 1;
}
/* store an entry in flash */
static int _nvs_flash_wrt_entry(struct nvs_fs *fs, u16_t id, const void *data,
size_t len)
{
int rc;
struct nvs_ate entry;
size_t ate_size;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
entry.id = id;
entry.offset = (u16_t)(fs->data_wra & ADDR_OFFS_MASK);
entry.len = (u16_t)len;
entry.part = 0xff;
_nvs_ate_crc8_update(&entry);
rc = _nvs_flash_data_wrt(fs, data, len);
if (rc) {
return rc;
}
rc = _nvs_flash_ate_wrt(fs, &entry);
if (rc) {
return rc;
}
if (len != 0) {
fs->free_space -= _nvs_al_size(fs, len);
fs->free_space -= ate_size;
}
return 0;
}
/* end of flash routines */
/* walking through allocation entry list, from newest to oldest entries
* read ate from addr, modify addr to the previous ate
*/
static int _nvs_prev_ate(struct nvs_fs *fs, u32_t *addr, struct nvs_ate *ate)
{
int rc;
size_t ate_size;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
rc = _nvs_flash_ate_rd(fs, *addr, ate);
if (rc) {
return rc;
}
while (1) {
*addr += ate_size;
if (((*addr) & ADDR_OFFS_MASK) != fs->sector_size) {
break;
}
/* last ate in sector, do jump to previous sector */
if (((*addr) >> ADDR_SECT_SHIFT) == 0) {
*addr += (fs->sector_count << ADDR_SECT_SHIFT);
}
(*addr) -= (1 << ADDR_SECT_SHIFT);
while (1) {
*addr -= ate_size;
rc = _nvs_flash_cmp_const(fs, *addr, 0xff, ate_size);
if (!rc) {
break;
}
rc = _nvs_flash_cmp_const(fs, *addr, 0x00, ate_size);
if (!rc) {
break;
}
/* stop at the end of the sector in case it is not
closed properly */
if (((*addr) & ADDR_OFFS_MASK) == 0) {
break;
}
}
/* stop after stepping through all sectors */
if (*addr == fs->ate_wra) {
break;
}
}
return 0;
}
static void _nvs_sector_advance(struct nvs_fs *fs, u32_t *addr)
{
*addr += (1 << ADDR_SECT_SHIFT);
if ((*addr >> ADDR_SECT_SHIFT) == fs->sector_count) {
*addr -= (fs->sector_count << ADDR_SECT_SHIFT);
}
}
/* allocation entry close (this closes the current sector) by writing all
* zeros at fs->ate_wra.
*/
static int _nvs_sector_close(struct nvs_fs *fs)
{
int rc;
u8_t buf[sizeof(struct nvs_ate)];
size_t ate_size;
ate_size = sizeof(struct nvs_ate);
(void)memset(buf, 0, ate_size);
rc = _nvs_flash_al_wrt(fs, fs->ate_wra, buf, ate_size);
if (rc) {
return rc;
}
fs->ate_wra &= ADDR_SECT_MASK;
fs->ate_wra += (fs->sector_size - ate_size);
_nvs_sector_advance(fs, &fs->ate_wra);
fs->data_wra = fs->ate_wra & ADDR_SECT_MASK;
return 0;
}
/* garbage collection: the address ate_wra has been updated to the new sector
* that has just been started. The data to gc is in the sector after this new
* sector.
*/
static int _nvs_gc(struct nvs_fs *fs)
{
int rc;
struct nvs_ate gc_ate, wlk_ate;
u32_t gc_addr, wlk_addr, wlk_prev_addr, data_addr, sec_addr;
size_t ate_size;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
gc_addr = (fs->ate_wra & ADDR_SECT_MASK) + fs->sector_size - ate_size;
_nvs_sector_advance(fs, &gc_addr);
sec_addr = gc_addr;
while (1) {
/* if the sector is empty don't do gc */
rc = _nvs_flash_cmp_const(fs, gc_addr, 0xff, ate_size);
if (!rc) {
break;
}
/* if sector end is reached stop gc */
rc = _nvs_flash_cmp_const(fs, gc_addr, 0x00, ate_size);
if (!rc) {
break;
}
rc = _nvs_flash_ate_rd(fs, gc_addr, &gc_ate);
if (rc) {
return rc;
}
wlk_addr = fs->ate_wra;
while (1) {
wlk_prev_addr = wlk_addr;
rc = _nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
if (rc) {
return rc;
}
/* if ate with same id is reached and it has valid crc8
* we might need to copy.
*/
if ((wlk_ate.id == gc_ate.id) &&
(!_nvs_ate_crc8_check(&wlk_ate))) {
break;
}
}
/* if walk has reached the same address as gc_addr copy is
* needed unless it is a deleted item.
*/
if ((wlk_prev_addr == gc_addr) && gc_ate.len) {
/* copy needed */
SYS_LOG_DBG("Moving %d, len %d", gc_ate.id, gc_ate.len);
data_addr = (gc_addr & ADDR_SECT_MASK);
data_addr += gc_ate.offset;
gc_ate.offset = (u16_t)(fs->data_wra & ADDR_OFFS_MASK);
_nvs_ate_crc8_update(&gc_ate);
rc = _nvs_flash_block_move(fs, data_addr, gc_ate.len);
if (rc) {
return rc;
}
rc = _nvs_flash_ate_wrt(fs, &gc_ate);
if (rc) {
return rc;
}
}
gc_addr -= ate_size;
}
rc = _nvs_flash_erase_sector(fs, sec_addr);
if (rc) {
return rc;
}
return 0;
}
static int _nvs_update_free_space(struct nvs_fs *fs)
{
int rc;
struct nvs_ate step_ate, wlk_ate;
u32_t step_addr, wlk_addr;
size_t ate_size;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
fs->free_space = 0;
for (u16_t i = 1; i < fs->sector_count; i++) {
fs->free_space += (fs->sector_size - ate_size);
}
step_addr = fs->ate_wra;
while (1) {
rc = _nvs_prev_ate(fs, &step_addr, &step_ate);
if (rc) {
return rc;
}
wlk_addr = fs->ate_wra;
while (1) {
rc = _nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
if (rc) {
return rc;
}
if ((wlk_ate.id == step_ate.id) ||
(wlk_addr == fs->ate_wra)) {
break;
}
}
if ((wlk_addr == step_addr) && step_ate.len &&
(!_nvs_ate_crc8_check(&step_ate))) {
/* count needed */
fs->free_space -= _nvs_al_size(fs, step_ate.len);
fs->free_space -= ate_size;
}
if (step_addr == fs->ate_wra) {
break;
}
}
return 0;
}
int nvs_clear(struct nvs_fs *fs)
{
int rc;
off_t addr;
for (u16_t i = 0; i < fs->sector_count; i++) {
addr = i << ADDR_SECT_SHIFT;
rc = _nvs_flash_erase_sector(fs, addr);
if (rc) {
return rc;
}
}
return 0;
}
int nvs_reinit(struct nvs_fs *fs)
{
int rc;
size_t ate_size, empty_len;
struct nvs_ate ate;
u32_t addr;
k_mutex_lock(&fs->nvs_lock, K_FOREVER);
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
/* step through the sectors to find the last sector */
for (u16_t i = 0; i < fs->sector_count; i++) {
addr = (i << ADDR_SECT_SHIFT) + fs->sector_size - ate_size;
fs->ate_wra = addr;
rc = _nvs_prev_ate(fs, &addr, &ate);
if (rc) {
goto end;
}
rc = _nvs_flash_cmp_const(fs, addr - ate_size, 0x00, ate_size);
if (!rc) {
/* we are just before (or after) sector end */
continue;
}
rc = _nvs_flash_cmp_const(fs, addr - ate_size, 0xff, ate_size);
if (!rc) {
break;
}
}
fs->ate_wra = addr;
fs->data_wra = addr & ADDR_SECT_MASK;
/* Normally addr points to a location that does not contain all ff, so
* ate_size needs to be substracted to get ate_wra. However there is an
* exception, when addr is the very end of a sector; then we keep
* fs->ate_wra.
*/
rc = _nvs_flash_cmp_const(fs, addr, 0xff, ate_size);
if (rc < 0) {
goto end;
}
if (rc) {
/* fs->ate_wra not at sector end */
fs->ate_wra -= ate_size;
rc = _nvs_flash_ate_rd(fs, addr, &ate);
if (rc) {
goto end;
}
if (!_nvs_ate_crc8_check(&ate)) {
/* crc8 is ok, complete write of ate was performed */
fs->data_wra += ate.offset;
fs->data_wra += _nvs_al_size(fs, ate.len);
}
}
/* possible data write after last ate write, update data_wra */
while (1) {
empty_len = fs->ate_wra - fs->data_wra;
if (!empty_len) {
break;
}
rc = _nvs_flash_cmp_const(fs, fs->data_wra, 0xff, empty_len);
if (rc < 0) {
goto end;
}
if (!rc) {
break;
}
fs->data_wra += fs->write_block_size;
}
/* if the sector after the write sector is not empty gc was interrupted
* we need to restart gc, first erase the sector before restarting gc
* otherwise the data may not fit into the sector.
*/
addr = fs->ate_wra & ADDR_SECT_MASK;
_nvs_sector_advance(fs, &addr);
rc = _nvs_flash_cmp_const(fs, addr, 0xff, fs->sector_size);
if (rc < 0) {
goto end;
}
if (rc) {
/* the sector after fs->ate_wrt is not empty */
rc = _nvs_flash_erase_sector(fs, fs->ate_wra);
if (rc) {
goto end;
}
fs->ate_wra &= ADDR_SECT_MASK;
fs->ate_wra += (fs->sector_size - ate_size);
fs->data_wra = (fs->ate_wra & ADDR_SECT_MASK);
rc = _nvs_gc(fs);
if (rc) {
goto end;
}
}
rc = _nvs_update_free_space(fs);
end:
k_mutex_unlock(&fs->nvs_lock);
return rc;
}
int nvs_init(struct nvs_fs *fs, const char *dev_name)
{
int rc;
k_mutex_init(&fs->nvs_lock);
fs->flash_device = device_get_binding(dev_name);
if (!fs->flash_device) {
SYS_LOG_ERR("No valid flash device found");
return -ENXIO;
}
fs->write_block_size = flash_get_write_block_size(fs->flash_device);
/* check the number of sectors, it should be at least 2 */
if (fs->sector_count < 2) {
SYS_LOG_ERR("Configuration error - sector count");
return -EINVAL;
}
fs->locked = false;
rc = nvs_reinit(fs);
if (rc) {
return rc;
}
SYS_LOG_INF("%d Sectors of %d bytes", fs->sector_count, fs->sector_size);
SYS_LOG_INF("alloc wra: %d, %"PRIx32"",
(fs->ate_wra >> ADDR_SECT_SHIFT),
(fs->ate_wra & ADDR_OFFS_MASK));
SYS_LOG_INF("data wra: %d, %"PRIx32"",
(fs->data_wra >> ADDR_SECT_SHIFT),
(fs->data_wra & ADDR_OFFS_MASK));
SYS_LOG_INF("Free space: %d", fs->free_space);
return 0;
}
ssize_t nvs_write(struct nvs_fs *fs, u16_t id, const void *data, size_t len)
{
int rc, gc_count;
size_t ate_size, data_size;
struct nvs_ate wlk_ate;
u32_t wlk_addr, rd_addr, freed_space;
u16_t sector_freespace;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
data_size = _nvs_al_size(fs, len);
if ((len > (fs->sector_size - 2*ate_size)) ||
((len > 0) && (data == NULL))) {
return -EINVAL;
}
if (fs->locked) {
return -EROFS;
}
/* find latest entry with same id */
wlk_addr = fs->ate_wra;
rd_addr = wlk_addr;
freed_space = 0;
while (1) {
rd_addr = wlk_addr;
rc = _nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
if (rc) {
return rc;
}
if ((wlk_ate.id == id) && (!_nvs_ate_crc8_check(&wlk_ate))) {
break;
}
if (wlk_addr == fs->ate_wra) {
break;
}
}
if (wlk_addr != fs->ate_wra) {
/* previous entry found */
rd_addr &= ADDR_SECT_MASK;
rd_addr += wlk_ate.offset;
if (len == 0) {
/* do not try to compare with empty data */
if (wlk_ate.len == 0) {
return 0;
}
} else {
/* compare the data and if equal return 0 */
rc = _nvs_flash_block_cmp(fs, rd_addr, data, len);
if (rc <= 0) {
return rc;
}
}
/* data different, calculate freed space */
freed_space = _nvs_al_size(fs, wlk_ate.len);
freed_space += ate_size;
}
k_mutex_lock(&fs->nvs_lock, K_FOREVER);
fs->free_space += freed_space;
if (fs->free_space < (data_size + ate_size)) {
rc = -ENOSPC;
goto end;
}
gc_count = 0;
while (1) {
if (gc_count == fs->sector_count) {
rc = -EROFS;
goto end;
}
sector_freespace = fs->ate_wra - fs->data_wra;
if (sector_freespace >= data_size + ate_size) {
rc = _nvs_flash_wrt_entry(fs, id, data, len);
if (rc) {
goto end;
}
break;
}
rc = _nvs_sector_close(fs);
if (rc) {
goto end;
}
rc = _nvs_gc(fs);
if (rc) {
goto end;
}
gc_count++;
}
rc = len;
end:
k_mutex_unlock(&fs->nvs_lock);
if (rc < 0) {
fs->free_space -= freed_space;
}
if (rc == -EROFS) {
fs->locked = true;
}
return rc;
}
int nvs_delete(struct nvs_fs *fs, u16_t id)
{
return nvs_write(fs, id, NULL, 0);
}
ssize_t nvs_read_hist(struct nvs_fs *fs, u16_t id, void *data, size_t len,
u16_t cnt)
{
int rc;
u32_t wlk_addr, rd_addr;
u16_t cnt_his;
struct nvs_ate wlk_ate;
size_t ate_size;
ate_size = _nvs_al_size(fs, sizeof(struct nvs_ate));
if (len > (fs->sector_size - 2*ate_size)) {
return -EINVAL;
}
cnt_his = 0;
wlk_addr = fs->ate_wra;
rd_addr = wlk_addr;
while (cnt_his <= cnt) {
rd_addr = wlk_addr;
rc = _nvs_prev_ate(fs, &wlk_addr, &wlk_ate);
if (rc) {
goto err;
}
if ((wlk_ate.id == id) && (!_nvs_ate_crc8_check(&wlk_ate))) {
cnt_his++;
}
if (wlk_addr == fs->ate_wra) {
break;
}
}
if (((wlk_addr == fs->ate_wra) && (wlk_ate.id != id)) ||
(wlk_ate.len == 0) || (cnt_his < cnt)) {
return -ENOENT;
}
rd_addr &= ADDR_SECT_MASK;
rd_addr += wlk_ate.offset;
rc = _nvs_flash_rd(fs, rd_addr, data, min(len, wlk_ate.len));
if (rc) {
goto err;
}
return wlk_ate.len;
err:
return rc;
}
ssize_t nvs_read(struct nvs_fs *fs, u16_t id, void *data, size_t len)
{
int rc;
rc = nvs_read_hist(fs, id, data, len, 0);
return rc;
}