461 lines
10 KiB
C
461 lines
10 KiB
C
/*
|
|
* Copyright (c) 2017 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Private API for SPI drivers
|
|
*/
|
|
|
|
#ifndef ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
|
|
#define ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_
|
|
|
|
#include <zephyr/drivers/gpio.h>
|
|
#include <zephyr/drivers/spi.h>
|
|
#include <zephyr/kernel.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
enum spi_ctx_runtime_op_mode {
|
|
SPI_CTX_RUNTIME_OP_MODE_MASTER = BIT(0),
|
|
SPI_CTX_RUNTIME_OP_MODE_SLAVE = BIT(1),
|
|
};
|
|
|
|
struct spi_context {
|
|
const struct spi_config *config;
|
|
const struct spi_config *owner;
|
|
const struct gpio_dt_spec *cs_gpios;
|
|
size_t num_cs_gpios;
|
|
|
|
struct k_sem lock;
|
|
struct k_sem sync;
|
|
int sync_status;
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
spi_callback_t callback;
|
|
void *callback_data;
|
|
bool asynchronous;
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
const struct spi_buf *current_tx;
|
|
size_t tx_count;
|
|
const struct spi_buf *current_rx;
|
|
size_t rx_count;
|
|
|
|
const uint8_t *tx_buf;
|
|
size_t tx_len;
|
|
uint8_t *rx_buf;
|
|
size_t rx_len;
|
|
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
int recv_frames;
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
};
|
|
|
|
#define SPI_CONTEXT_INIT_LOCK(_data, _ctx_name) \
|
|
._ctx_name.lock = Z_SEM_INITIALIZER(_data._ctx_name.lock, 0, 1)
|
|
|
|
#define SPI_CONTEXT_INIT_SYNC(_data, _ctx_name) \
|
|
._ctx_name.sync = Z_SEM_INITIALIZER(_data._ctx_name.sync, 0, 1)
|
|
|
|
#define SPI_CONTEXT_CS_GPIO_SPEC_ELEM(_node_id, _prop, _idx) \
|
|
GPIO_DT_SPEC_GET_BY_IDX(_node_id, _prop, _idx),
|
|
|
|
#define SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id) \
|
|
DT_FOREACH_PROP_ELEM(_node_id, cs_gpios, \
|
|
SPI_CONTEXT_CS_GPIO_SPEC_ELEM)
|
|
|
|
#define SPI_CONTEXT_CS_GPIOS_INITIALIZE(_node_id, _ctx_name) \
|
|
._ctx_name.cs_gpios = (const struct gpio_dt_spec []) { \
|
|
COND_CODE_1(DT_SPI_HAS_CS_GPIOS(_node_id), \
|
|
(SPI_CONTEXT_CS_GPIOS_FOREACH_ELEM(_node_id)), ({0})) \
|
|
}, \
|
|
._ctx_name.num_cs_gpios = DT_PROP_LEN_OR(_node_id, cs_gpios, 0),
|
|
|
|
static inline bool spi_context_configured(struct spi_context *ctx,
|
|
const struct spi_config *config)
|
|
{
|
|
return !!(ctx->config == config);
|
|
}
|
|
|
|
static inline bool spi_context_is_slave(struct spi_context *ctx)
|
|
{
|
|
return (ctx->config->operation & SPI_OP_MODE_SLAVE);
|
|
}
|
|
|
|
static inline void spi_context_lock(struct spi_context *ctx,
|
|
bool asynchronous,
|
|
spi_callback_t callback,
|
|
void *callback_data,
|
|
const struct spi_config *spi_cfg)
|
|
{
|
|
if ((spi_cfg->operation & SPI_LOCK_ON) &&
|
|
(k_sem_count_get(&ctx->lock) == 0) &&
|
|
(ctx->owner == spi_cfg)) {
|
|
return;
|
|
}
|
|
|
|
k_sem_take(&ctx->lock, K_FOREVER);
|
|
ctx->owner = spi_cfg;
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
ctx->asynchronous = asynchronous;
|
|
ctx->callback = callback;
|
|
ctx->callback_data = callback_data;
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
}
|
|
|
|
static inline void spi_context_release(struct spi_context *ctx, int status)
|
|
{
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
if (status >= 0 && (ctx->config->operation & SPI_LOCK_ON)) {
|
|
return;
|
|
}
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
if (!ctx->asynchronous || (status < 0)) {
|
|
ctx->owner = NULL;
|
|
k_sem_give(&ctx->lock);
|
|
}
|
|
#else
|
|
if (!(ctx->config->operation & SPI_LOCK_ON)) {
|
|
ctx->owner = NULL;
|
|
k_sem_give(&ctx->lock);
|
|
}
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
}
|
|
|
|
static inline size_t spi_context_total_tx_len(struct spi_context *ctx);
|
|
static inline size_t spi_context_total_rx_len(struct spi_context *ctx);
|
|
|
|
static inline int spi_context_wait_for_completion(struct spi_context *ctx)
|
|
{
|
|
int status = 0;
|
|
bool wait;
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
wait = !ctx->asynchronous;
|
|
#else
|
|
wait = true;
|
|
#endif
|
|
|
|
if (wait) {
|
|
k_timeout_t timeout;
|
|
|
|
/* Do not use any timeout in the slave mode, as in this case
|
|
* it is not known when the transfer will actually start and
|
|
* what the frequency will be.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_SPI_SLAVE) && spi_context_is_slave(ctx)) {
|
|
timeout = K_FOREVER;
|
|
} else {
|
|
uint32_t tx_len = spi_context_total_tx_len(ctx);
|
|
uint32_t rx_len = spi_context_total_rx_len(ctx);
|
|
uint32_t timeout_ms;
|
|
|
|
timeout_ms = MAX(tx_len, rx_len) * 8 * 1000 /
|
|
ctx->config->frequency;
|
|
timeout_ms += CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE;
|
|
|
|
timeout = K_MSEC(timeout_ms);
|
|
}
|
|
|
|
if (k_sem_take(&ctx->sync, timeout)) {
|
|
LOG_ERR("Timeout waiting for transfer complete");
|
|
return -ETIMEDOUT;
|
|
}
|
|
status = ctx->sync_status;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
if (spi_context_is_slave(ctx) && !status) {
|
|
return ctx->recv_frames;
|
|
}
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
|
|
return status;
|
|
}
|
|
|
|
static inline void spi_context_complete(struct spi_context *ctx,
|
|
const struct device *dev,
|
|
int status)
|
|
{
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
if (!ctx->asynchronous) {
|
|
ctx->sync_status = status;
|
|
k_sem_give(&ctx->sync);
|
|
} else {
|
|
if (ctx->callback) {
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
if (spi_context_is_slave(ctx) && !status) {
|
|
/* Let's update the status so it tells
|
|
* about number of received frames.
|
|
*/
|
|
status = ctx->recv_frames;
|
|
}
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
ctx->callback(dev, status, ctx->callback_data);
|
|
}
|
|
|
|
if (!(ctx->config->operation & SPI_LOCK_ON)) {
|
|
ctx->owner = NULL;
|
|
k_sem_give(&ctx->lock);
|
|
}
|
|
}
|
|
#else
|
|
ctx->sync_status = status;
|
|
k_sem_give(&ctx->sync);
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
}
|
|
|
|
static inline int spi_context_cs_configure_all(struct spi_context *ctx)
|
|
{
|
|
int ret;
|
|
const struct gpio_dt_spec *cs_gpio;
|
|
|
|
for (cs_gpio = ctx->cs_gpios; cs_gpio < &ctx->cs_gpios[ctx->num_cs_gpios]; cs_gpio++) {
|
|
if (!device_is_ready(cs_gpio->port)) {
|
|
LOG_ERR("CS GPIO port %s pin %d is not ready",
|
|
cs_gpio->port->name, cs_gpio->pin);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = gpio_pin_configure_dt(cs_gpio, GPIO_OUTPUT_INACTIVE);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void _spi_context_cs_control(struct spi_context *ctx,
|
|
bool on, bool force_off)
|
|
{
|
|
if (ctx->config && spi_cs_is_gpio(ctx->config)) {
|
|
if (on) {
|
|
gpio_pin_set_dt(&ctx->config->cs.gpio, 1);
|
|
k_busy_wait(ctx->config->cs.delay);
|
|
} else {
|
|
if (!force_off &&
|
|
ctx->config->operation & SPI_HOLD_ON_CS) {
|
|
return;
|
|
}
|
|
|
|
k_busy_wait(ctx->config->cs.delay);
|
|
gpio_pin_set_dt(&ctx->config->cs.gpio, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void spi_context_cs_control(struct spi_context *ctx, bool on)
|
|
{
|
|
_spi_context_cs_control(ctx, on, false);
|
|
}
|
|
|
|
static inline void spi_context_unlock_unconditionally(struct spi_context *ctx)
|
|
{
|
|
/* Forcing CS to go to inactive status */
|
|
_spi_context_cs_control(ctx, false, true);
|
|
|
|
if (!k_sem_count_get(&ctx->lock)) {
|
|
ctx->owner = NULL;
|
|
k_sem_give(&ctx->lock);
|
|
}
|
|
}
|
|
|
|
static inline void *spi_context_get_next_buf(const struct spi_buf **current,
|
|
size_t *count,
|
|
size_t *buf_len,
|
|
uint8_t dfs)
|
|
{
|
|
/* This loop skips zero-length buffers in the set, if any. */
|
|
while (*count) {
|
|
if (((*current)->len / dfs) != 0) {
|
|
*buf_len = (*current)->len / dfs;
|
|
return (*current)->buf;
|
|
}
|
|
++(*current);
|
|
--(*count);
|
|
}
|
|
|
|
*buf_len = 0;
|
|
return NULL;
|
|
}
|
|
|
|
static inline
|
|
void spi_context_buffers_setup(struct spi_context *ctx,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
uint8_t dfs)
|
|
{
|
|
LOG_DBG("tx_bufs %p - rx_bufs %p - %u", tx_bufs, rx_bufs, dfs);
|
|
|
|
ctx->current_tx = tx_bufs ? tx_bufs->buffers : NULL;
|
|
ctx->tx_count = ctx->current_tx ? tx_bufs->count : 0;
|
|
ctx->tx_buf = (const uint8_t *)
|
|
spi_context_get_next_buf(&ctx->current_tx, &ctx->tx_count,
|
|
&ctx->tx_len, dfs);
|
|
|
|
ctx->current_rx = rx_bufs ? rx_bufs->buffers : NULL;
|
|
ctx->rx_count = ctx->current_rx ? rx_bufs->count : 0;
|
|
ctx->rx_buf = (uint8_t *)
|
|
spi_context_get_next_buf(&ctx->current_rx, &ctx->rx_count,
|
|
&ctx->rx_len, dfs);
|
|
|
|
ctx->sync_status = 0;
|
|
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
ctx->recv_frames = 0;
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
|
|
LOG_DBG("current_tx %p (%zu), current_rx %p (%zu),"
|
|
" tx buf/len %p/%zu, rx buf/len %p/%zu",
|
|
ctx->current_tx, ctx->tx_count,
|
|
ctx->current_rx, ctx->rx_count,
|
|
(void *)ctx->tx_buf, ctx->tx_len,
|
|
(void *)ctx->rx_buf, ctx->rx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
void spi_context_update_tx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
|
|
{
|
|
if (!ctx->tx_len) {
|
|
return;
|
|
}
|
|
|
|
if (len > ctx->tx_len) {
|
|
LOG_ERR("Update exceeds current buffer");
|
|
return;
|
|
}
|
|
|
|
ctx->tx_len -= len;
|
|
if (!ctx->tx_len) {
|
|
/* Current buffer is done. Get the next one to be processed. */
|
|
++ctx->current_tx;
|
|
--ctx->tx_count;
|
|
ctx->tx_buf = (const uint8_t *)
|
|
spi_context_get_next_buf(&ctx->current_tx,
|
|
&ctx->tx_count,
|
|
&ctx->tx_len, dfs);
|
|
} else if (ctx->tx_buf) {
|
|
ctx->tx_buf += dfs * len;
|
|
}
|
|
|
|
LOG_DBG("tx buf/len %p/%zu", (void *)ctx->tx_buf, ctx->tx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
bool spi_context_tx_on(struct spi_context *ctx)
|
|
{
|
|
return !!(ctx->tx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
bool spi_context_tx_buf_on(struct spi_context *ctx)
|
|
{
|
|
return !!(ctx->tx_buf && ctx->tx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
void spi_context_update_rx(struct spi_context *ctx, uint8_t dfs, uint32_t len)
|
|
{
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
if (spi_context_is_slave(ctx)) {
|
|
ctx->recv_frames += len;
|
|
}
|
|
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
|
|
if (!ctx->rx_len) {
|
|
return;
|
|
}
|
|
|
|
if (len > ctx->rx_len) {
|
|
LOG_ERR("Update exceeds current buffer");
|
|
return;
|
|
}
|
|
|
|
ctx->rx_len -= len;
|
|
if (!ctx->rx_len) {
|
|
/* Current buffer is done. Get the next one to be processed. */
|
|
++ctx->current_rx;
|
|
--ctx->rx_count;
|
|
ctx->rx_buf = (uint8_t *)
|
|
spi_context_get_next_buf(&ctx->current_rx,
|
|
&ctx->rx_count,
|
|
&ctx->rx_len, dfs);
|
|
} else if (ctx->rx_buf) {
|
|
ctx->rx_buf += dfs * len;
|
|
}
|
|
|
|
LOG_DBG("rx buf/len %p/%zu", (void *)ctx->rx_buf, ctx->rx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
bool spi_context_rx_on(struct spi_context *ctx)
|
|
{
|
|
return !!(ctx->rx_len);
|
|
}
|
|
|
|
static ALWAYS_INLINE
|
|
bool spi_context_rx_buf_on(struct spi_context *ctx)
|
|
{
|
|
return !!(ctx->rx_buf && ctx->rx_len);
|
|
}
|
|
|
|
/*
|
|
* Returns the maximum length of a transfer for which all currently active
|
|
* directions have a continuous buffer, i.e. the maximum SPI transfer that
|
|
* can be done with DMA that handles only non-scattered buffers.
|
|
*/
|
|
static inline size_t spi_context_max_continuous_chunk(struct spi_context *ctx)
|
|
{
|
|
if (!ctx->tx_len) {
|
|
return ctx->rx_len;
|
|
} else if (!ctx->rx_len) {
|
|
return ctx->tx_len;
|
|
}
|
|
|
|
return MIN(ctx->tx_len, ctx->rx_len);
|
|
}
|
|
|
|
static inline size_t spi_context_longest_current_buf(struct spi_context *ctx)
|
|
{
|
|
return ctx->tx_len > ctx->rx_len ? ctx->tx_len : ctx->rx_len;
|
|
}
|
|
|
|
static inline size_t spi_context_total_tx_len(struct spi_context *ctx)
|
|
{
|
|
size_t n;
|
|
size_t total_len = 0;
|
|
|
|
for (n = 0; n < ctx->tx_count; ++n) {
|
|
total_len += ctx->current_tx[n].len;
|
|
}
|
|
|
|
return total_len;
|
|
}
|
|
|
|
static inline size_t spi_context_total_rx_len(struct spi_context *ctx)
|
|
{
|
|
size_t n;
|
|
size_t total_len = 0;
|
|
|
|
for (n = 0; n < ctx->rx_count; ++n) {
|
|
total_len += ctx->current_rx[n].len;
|
|
}
|
|
|
|
return total_len;
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ */
|