zephyr/include/arch/x86/arch.h

457 lines
13 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief IA-32 specific nanokernel interface header
* This header contains the IA-32 specific nanokernel interface. It is included
* by the generic nanokernel interface header (nanokernel.h)
*/
#ifndef _ARCH_IFACE_H
#define _ARCH_IFACE_H
#ifndef _ASMLANGUAGE
#include <arch/x86/asm_inline.h>
#include <arch/x86/addr_types.h>
#endif
/* APIs need to support non-byte addressable architectures */
#define OCTET_TO_SIZEOFUNIT(X) (X)
#define SIZEOFUNIT_TO_OCTET(X) (X)
/**
* Macro used internally by NANO_CPU_INT_REGISTER and NANO_CPU_INT_REGISTER_ASM.
* Not meant to be used explicitly by platform, driver or application code.
*/
#define MK_ISR_NAME(x) __isr__##x
#ifdef CONFIG_MICROKERNEL
#define ALL_DYN_IRQ_STUBS (CONFIG_NUM_DYNAMIC_STUBS + CONFIG_MAX_NUM_TASK_IRQS)
#elif defined(CONFIG_NANOKERNEL)
#define ALL_DYN_IRQ_STUBS (CONFIG_NUM_DYNAMIC_STUBS)
#endif
#define ALL_DYN_EXC_STUBS (CONFIG_NUM_DYNAMIC_EXC_STUBS + \
CONFIG_NUM_DYNAMIC_EXC_NOERR_STUBS)
#define ALL_DYN_STUBS (ALL_DYN_EXC_STUBS + ALL_DYN_IRQ_STUBS)
/*
* Synchronize these DYN_STUB_* macros with the generated assembly for
* _DynIntStubsBegin in intstub.S / _DynExcStubsBegin in excstub.S
* Assumes all stub types are same size/format
*/
/* Size of each dynamic interrupt/exception stub in bytes */
#define DYN_STUB_SIZE 9
/*
* Offset from the beginning of a stub to the byte containing the argument
* to the push instruction, which is the stub index
*/
#define DYN_STUB_IDX_OFFSET 6
/* Size of the periodic jmp instruction to the common handler */
#define DYN_STUB_JMP_SIZE 5
/*
* How many consecutive stubs we have until we encounter a periodic
* jump to _DynStubCommon
*/
#define DYN_STUB_PER_BLOCK 8
#ifndef _ASMLANGUAGE
/* interrupt/exception/error related definitions */
/**
* Floating point register set alignment.
*
* If support for SSEx extensions is enabled a 16 byte boundary is required,
* since the 'fxsave' and 'fxrstor' instructions require this. In all other
* cases a 4 byte boundary is sufficient.
*/
#ifdef CONFIG_SSE
#define FP_REG_SET_ALIGN 16
#else
#define FP_REG_SET_ALIGN 4
#endif
/*
* The TCS must be aligned to the same boundary as that used by the floating
* point register set. This applies even for threads that don't initially
* use floating point, since it is possible to enable floating point support
* later on.
*/
#define STACK_ALIGN FP_REG_SET_ALIGN
typedef struct s_isrList {
/** Address of ISR/stub */
void *fnc;
/** IRQ associated with the ISR/stub */
unsigned int irq;
/** Priority associated with the IRQ */
unsigned int priority;
/** Vector number associated with ISR/stub */
unsigned int vec;
/** Privilege level associated with ISR/stub */
unsigned int dpl;
} ISR_LIST;
/**
* @brief Connect a routine to an interrupt vector
*
* This macro "connects" the specified routine, @a r, to the specified interrupt
* vector, @a v using the descriptor privilege level @a d. On the IA-32
* architecture, an interrupt vector is a value from 0 to 255. This macro
* populates the special intList section with the address of the routine, the
* vector number and the descriptor privilege level. The genIdt tool then picks
* up this information and generates an actual IDT entry with this information
* properly encoded. This macro replaces the _IntVecSet () routine in static
* interrupt systems.
*
* The @a d argument specifies the privilege level for the interrupt-gate
* descriptor; (hardware) interrupts and exceptions should specify a level of 0,
* whereas handlers for user-mode software generated interrupts should specify 3.
* @param r Routine to be connected
* @param n IRQ number
* @param p IRQ priority
* @param v Interrupt Vector
* @param d Descriptor Privilege Level
*
* @return N/A
*
*/
#define NANO_CPU_INT_REGISTER(r, n, p, v, d) \
ISR_LIST __attribute__((section(".intList"))) MK_ISR_NAME(r) = \
{&r, n, p, v, d}
/**
* @brief Connect a routine to interrupt number
*
* For the device @a device associates IRQ number @a irq with priority
* @a priority with the interrupt routine @a isr, that receives parameter
* @a parameter.
*
* @param device Device
* @param irq IRQ number
* @param priority IRQ Priority
* @param isr Interrupt Service Routine
* @param parameter ISR parameter
* @param flags IRQ triggering options
*
* @return N/A
*
*/
#define IRQ_CONNECT_STATIC(device, irq, priority, isr, parameter, flags) \
extern void *_##device##_##isr##_stub; \
const uint32_t _##device##_irq_flags = (flags); \
NANO_CPU_INT_REGISTER(_##device##_##isr##_stub, (irq), (priority), -1, 0)
extern unsigned char _irq_to_interrupt_vector[];
/**
* @brief Convert a statically connected IRQ to its interrupt vector number
*
* @param irq IRQ number
*/
#define _IRQ_TO_INTERRUPT_VECTOR(irq) \
((unsigned int) _irq_to_interrupt_vector[irq])
/**
*
* @brief Configure interrupt for the device
*
* For the given device do the necessary configuration steps.
* For x86 platform configure APIC and mark interrupt vector allocated
* @param device Device - not used by macro
* @param irq IRQ
* @param priority IRQ priority, unused on this platform
*
* @return N/A
*
*/
#define IRQ_CONFIG(device, irq, priority) \
do { \
_SysIntVecProgram(_IRQ_TO_INTERRUPT_VECTOR((irq)), (irq), \
_##device##_irq_flags); \
} while (0)
/**
* @brief Nanokernel Exception Stack Frame
*
* A pointer to an "exception stack frame" (ESF) is passed as an argument
* to exception handlers registered via nanoCpuExcConnect(). As the system
* always operates at ring 0, only the EIP, CS and EFLAGS registers are pushed
* onto the stack when an exception occurs.
*
* The exception stack frame includes the volatile registers (EAX, ECX, and
* EDX) as well as the 5 non-volatile registers (EDI, ESI, EBX, EBP and ESP).
* Those registers are pushed onto the stack by _ExcEnt().
*/
typedef struct nanoEsf {
unsigned int esp;
unsigned int ebp;
unsigned int ebx;
unsigned int esi;
unsigned int edi;
unsigned int edx;
unsigned int ecx;
unsigned int eax;
unsigned int errorCode;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
} NANO_ESF;
/**
* @brief Nanokernel "interrupt stack frame" (ISF)
*
* An "interrupt stack frame" (ISF) as constructed by the processor
* and the interrupt wrapper function _IntEnt(). As the system always operates
* at ring 0, only the EIP, CS and EFLAGS registers are pushed onto the stack
* when an interrupt occurs.
*
* The interrupt stack frame includes the volatile registers EAX, ECX, and EDX
* pushed on the stack by _IntEnt().
*/
typedef struct nanoIsf {
unsigned int edx;
unsigned int ecx;
unsigned int eax;
unsigned int eip;
unsigned int cs;
unsigned int eflags;
} NANO_ISF;
#endif /* !_ASMLANGUAGE */
/*
* Reason codes passed to both _NanoFatalErrorHandler()
* and _SysFatalErrorHandler().
*/
/** Unhandled exception/interrupt */
#define _NANO_ERR_SPURIOUS_INT (0)
/** Page fault */
#define _NANO_ERR_PAGE_FAULT (1)
/** General protection fault */
#define _NANO_ERR_GEN_PROT_FAULT (2)
/** Invalid task exit */
#define _NANO_ERR_INVALID_TASK_EXIT (3)
/** Stack corruption detected */
#define _NANO_ERR_STACK_CHK_FAIL (4)
/** Kernel Allocation Failure */
#define _NANO_ERR_ALLOCATION_FAIL (5)
#ifndef _ASMLANGUAGE
#ifdef CONFIG_INT_LATENCY_BENCHMARK
void _int_latency_start(void);
void _int_latency_stop(void);
#endif
/**
* @brief Disable all interrupts on the CPU (inline)
*
* This routine disables interrupts. It can be called from either interrupt,
* task or fiber level. This routine returns an architecture-dependent
* lock-out key representing the "interrupt disable state" prior to the call;
* this key can be passed to irq_unlock() to re-enable interrupts.
*
* The lock-out key should only be used as the argument to the irq_unlock()
* API. It should never be used to manually re-enable interrupts or to inspect
* or manipulate the contents of the source register.
*
* This function can be called recursively: it will return a key to return the
* state of interrupt locking to the previous level.
*
* WARNINGS
* Invoking a kernel routine with interrupts locked may result in
* interrupts being re-enabled for an unspecified period of time. If the
* called routine blocks, interrupts will be re-enabled while another
* thread executes, or while the system is idle.
*
* The "interrupt disable state" is an attribute of a thread. Thus, if a
* fiber or task disables interrupts and subsequently invokes a kernel
* routine that causes the calling thread to block, the interrupt
* disable state will be restored when the thread is later rescheduled
* for execution.
*
* @return An architecture-dependent lock-out key representing the
* "interrupt disable state" prior to the call.
*
*/
static inline __attribute__((always_inline)) unsigned int irq_lock(void)
{
unsigned int key = _do_irq_lock();
#ifdef CONFIG_INT_LATENCY_BENCHMARK
_int_latency_start();
#endif
return key;
}
/**
*
* @brief Enable all interrupts on the CPU (inline)
*
* This routine re-enables interrupts on the CPU. The @a key parameter
* is an architecture-dependent lock-out key that is returned by a previous
* invocation of irq_lock().
*
* This routine can be called from either interrupt, task or fiber level.
*
* @return N/A
*
*/
static inline __attribute__((always_inline)) void irq_unlock(unsigned int key)
{
if (!(key & 0x200)) {
return;
}
#ifdef CONFIG_INT_LATENCY_BENCHMARK
_int_latency_stop();
#endif
_do_irq_unlock();
}
/** interrupt/exception/error related definitions */
typedef void (*NANO_EOI_GET_FUNC) (void *);
/**
* The NANO_SOFT_IRQ macro must be used as the value for the @a irq parameter
* to irq_connect() when connecting to a software generated interrupt.
*/
#define NANO_SOFT_IRQ ((unsigned int) (-1))
#ifdef CONFIG_FP_SHARING
/* Definitions for the 'options' parameter to the fiber_fiber_start() API */
/** thread uses floating point unit */
#define USE_FP 0x10
#ifdef CONFIG_SSE
/** thread uses SSEx instructions */
#define USE_SSE 0x20
#endif /* CONFIG_SSE */
#endif /* CONFIG_FP_SHARING */
extern int irq_connect(unsigned int irq,
unsigned int priority,
void (*routine)(void *parameter),
void *parameter,
uint32_t flags);
/**
* @brief Enable a specific IRQ
* @param irq IRQ
*/
extern void irq_enable(unsigned int irq);
/**
* @brief Disable a specific IRQ
* @param irq IRQ
*/
extern void irq_disable(unsigned int irq);
#ifdef CONFIG_FP_SHARING
/**
* @brief Enable floating point hardware resources sharing
* Dynamically enable/disable the capability of a thread to share floating
* point hardware resources. The same "floating point" options accepted by
* fiber_fiber_start() are accepted by these APIs (i.e. USE_FP and USE_SSE).
*/
extern void fiber_float_enable(nano_thread_id_t thread_id,
unsigned int options);
extern void task_float_enable(nano_thread_id_t thread_id,
unsigned int options);
extern void fiber_float_disable(nano_thread_id_t thread_id);
extern void task_float_disable(nano_thread_id_t thread_id);
#endif /* CONFIG_FP_SHARING */
#include <stddef.h> /* for size_t */
extern void nano_cpu_idle(void);
/** Nanokernel provided routine to report any detected fatal error. */
extern FUNC_NORETURN void _NanoFatalErrorHandler(unsigned int reason,
const NANO_ESF * pEsf);
/** User provided routine to handle any detected fatal error post reporting. */
extern FUNC_NORETURN void _SysFatalErrorHandler(unsigned int reason,
const NANO_ESF * pEsf);
/** Dummy ESF for fatal errors that would otherwise not have an ESF */
extern const NANO_ESF _default_esf;
/**
* @brief Configure an interrupt vector of the specified priority
*
* This routine is invoked by the kernel to configure an interrupt vector of
* the specified priority. To this end, it allocates an interrupt vector,
* programs hardware to route interrupt requests on the specified IRQ to that
* vector, and returns the vector number
*/
extern int _SysIntVecAlloc(unsigned int irq,
unsigned int priority,
uint32_t flags);
/**
*
* @brief Program interrupt controller
*
* This routine programs the interrupt controller with the given vector
* based on the given IRQ parameter.
*
* Drivers call this routine instead of irq_connect() when interrupts are
* configured statically.
*
*/
extern void _SysIntVecProgram(unsigned int vector, unsigned int irq, uint32_t flags);
/* functions provided by the kernel for usage by _SysIntVecAlloc() */
extern int _IntVecAlloc(unsigned int priority);
extern void _IntVecMarkAllocated(unsigned int vector);
extern void _IntVecMarkFree(unsigned int vector);
#endif /* !_ASMLANGUAGE */
/* Segment selector definitions are shared */
#include "segselect.h"
/* reboot through Reset Control Register (I/O port 0xcf9) */
#define SYS_X86_RST_CNT_REG 0xcf9
#define SYS_X86_RST_CNT_SYS_RST 0x02
#define SYS_X86_RST_CNT_CPU_RST 0x4
#define SYS_X86_RST_CNT_FULL_RST 0x08
#endif /* _ARCH_IFACE_H */