zephyr/ext/hal/ksdk/drivers/fsl_mpu.c

233 lines
8.6 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_mpu.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Defines the register numbers of the region descriptor configure. */
#define MPU_REGIONDESCRIPTOR_WROD_REGNUM (4U)
/*******************************************************************************
* Variables
******************************************************************************/
const clock_ip_name_t g_mpuClock[FSL_FEATURE_SOC_MPU_COUNT] = MPU_CLOCKS;
/*******************************************************************************
* Codes
******************************************************************************/
void MPU_Init(MPU_Type *base, const mpu_config_t *config)
{
assert(config);
uint8_t count;
/* Un-gate MPU clock */
CLOCK_EnableClock(g_mpuClock[0]);
/* Initializes the regions. */
for (count = 1; count < FSL_FEATURE_MPU_DESCRIPTOR_COUNT; count++)
{
base->WORD[count][3] = 0; /* VLD/VID+PID. */
base->WORD[count][0] = 0; /* Start address. */
base->WORD[count][1] = 0; /* End address. */
base->WORD[count][2] = 0; /* Access rights. */
base->RGDAAC[count] = 0; /* Alternate access rights. */
}
/* MPU configure. */
while (config)
{
MPU_SetRegionConfig(base, &(config->regionConfig));
config = config->next;
}
/* Enable MPU. */
MPU_Enable(base, true);
}
void MPU_Deinit(MPU_Type *base)
{
/* Disable MPU. */
MPU_Enable(base, false);
/* Gate the clock. */
CLOCK_DisableClock(g_mpuClock[0]);
}
void MPU_GetHardwareInfo(MPU_Type *base, mpu_hardware_info_t *hardwareInform)
{
assert(hardwareInform);
uint32_t cesReg = base->CESR;
hardwareInform->hardwareRevisionLevel = (cesReg & MPU_CESR_HRL_MASK) >> MPU_CESR_HRL_SHIFT;
hardwareInform->slavePortsNumbers = (cesReg & MPU_CESR_NSP_MASK) >> MPU_CESR_NSP_SHIFT;
hardwareInform->regionsNumbers = (mpu_region_total_num_t)((cesReg & MPU_CESR_NRGD_MASK) >> MPU_CESR_NRGD_SHIFT);
}
void MPU_SetRegionConfig(MPU_Type *base, const mpu_region_config_t *regionConfig)
{
assert(regionConfig);
uint32_t wordReg = 0;
uint8_t count;
uint8_t number = regionConfig->regionNum;
/* The start and end address of the region descriptor. */
base->WORD[number][0] = regionConfig->startAddress;
base->WORD[number][1] = regionConfig->endAddress;
/* The region descriptor access rights control. */
for (count = 0; count < MPU_REGIONDESCRIPTOR_WROD_REGNUM; count++)
{
wordReg |= MPU_WORD_LOW_MASTER(count, (((uint32_t)regionConfig->accessRights1[count].superAccessRights << 3U) |
(uint8_t)regionConfig->accessRights1[count].userAccessRights)) |
MPU_WORD_HIGH_MASTER(count, ((uint32_t)regionConfig->accessRights2[count].readEnable << 1U |
(uint8_t)regionConfig->accessRights2[count].writeEnable));
#if FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER
wordReg |= MPU_WORD_MASTER_PE(count, regionConfig->accessRights1[count].processIdentifierEnable);
#endif /* FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER */
}
/* Set region descriptor access rights. */
base->WORD[number][2] = wordReg;
wordReg = MPU_WORD_VLD(1);
#if FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER
wordReg |= MPU_WORD_PID(regionConfig->processIdentifier) | MPU_WORD_PIDMASK(regionConfig->processIdMask);
#endif /* FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER */
base->WORD[number][3] = wordReg;
}
void MPU_SetRegionAddr(MPU_Type *base, mpu_region_num_t regionNum, uint32_t startAddr, uint32_t endAddr)
{
base->WORD[regionNum][0] = startAddr;
base->WORD[regionNum][1] = endAddr;
}
void MPU_SetRegionLowMasterAccessRights(MPU_Type *base,
mpu_region_num_t regionNum,
mpu_master_t masterNum,
const mpu_low_masters_access_rights_t *accessRights)
{
assert(accessRights);
#if FSL_FEATURE_MPU_HAS_MASTER4
assert(masterNum < kMPU_Master4);
#endif
uint32_t mask = MPU_WORD_LOW_MASTER_MASK(masterNum);
uint32_t right = base->RGDAAC[regionNum];
#if FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER
mask |= MPU_LOW_MASTER_PE_MASK(masterNum);
#endif
/* Build rights control value. */
right &= ~mask;
right |= MPU_WORD_LOW_MASTER(masterNum,
((uint32_t)(accessRights->superAccessRights << 3U) | accessRights->userAccessRights));
#if FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER
right |= MPU_WORD_MASTER_PE(masterNum, accessRights->processIdentifierEnable);
#endif /* FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER */
/* Set low master region access rights. */
base->RGDAAC[regionNum] = right;
}
void MPU_SetRegionHighMasterAccessRights(MPU_Type *base,
mpu_region_num_t regionNum,
mpu_master_t masterNum,
const mpu_high_masters_access_rights_t *accessRights)
{
assert(accessRights);
#if FSL_FEATURE_MPU_HAS_MASTER3
assert(masterNum > kMPU_Master3);
#endif
uint32_t mask = MPU_WORD_HIGH_MASTER_MASK(masterNum);
uint32_t right = base->RGDAAC[regionNum];
/* Build rights control value. */
right &= ~mask;
right |= MPU_WORD_HIGH_MASTER((masterNum - (uint8_t)kMPU_RegionNum04),
(((uint32_t)accessRights->readEnable << 1U) | accessRights->writeEnable));
/* Set low master region access rights. */
base->RGDAAC[regionNum] = right;
}
bool MPU_GetSlavePortErrorStatus(MPU_Type *base, mpu_slave_t slaveNum)
{
uint8_t sperr;
sperr = ((base->CESR & MPU_CESR_SPERR_MASK) >> MPU_CESR_SPERR_SHIFT) & (0x1U << slaveNum);
return (sperr != 0) ? true : false;
}
void MPU_GetDetailErrorAccessInfo(MPU_Type *base, mpu_slave_t slaveNum, mpu_access_err_info_t *errInform)
{
assert(errInform);
uint16_t value;
/* Error address. */
errInform->address = base->SP[slaveNum].EAR;
/* Error detail information. */
value = (base->SP[slaveNum].EDR & MPU_EDR_EACD_MASK) >> MPU_EDR_EACD_SHIFT;
if (!value)
{
errInform->accessControl = kMPU_NoRegionHit;
}
else if (!(value & (uint16_t)(value - 1)))
{
errInform->accessControl = kMPU_NoneOverlappRegion;
}
else
{
errInform->accessControl = kMPU_OverlappRegion;
}
value = base->SP[slaveNum].EDR;
errInform->master = (mpu_master_t)((value & MPU_EDR_EMN_MASK) >> MPU_EDR_EMN_SHIFT);
errInform->attributes = (mpu_err_attributes_t)((value & MPU_EDR_EATTR_MASK) >> MPU_EDR_EATTR_SHIFT);
errInform->accessType = (mpu_err_access_type_t)((value & MPU_EDR_ERW_MASK) >> MPU_EDR_ERW_SHIFT);
#if FSL_FEATURE_MPU_HAS_PROCESS_IDENTIFIER
errInform->processorIdentification = (uint8_t)((value & MPU_EDR_EPID_MASK) >> MPU_EDR_EPID_SHIFT);
#endif
/*!< Clears error slave port bit. */
value = (base->CESR & ~MPU_CESR_SPERR_MASK) | (0x1U << slaveNum);
base->CESR = value;
}