zephyr/drivers/sensor/lsm6dso/lsm6dso.c

976 lines
23 KiB
C

/* ST Microelectronics LSM6DSO 6-axis IMU sensor driver
*
* Copyright (c) 2019 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lsm6dso.pdf
*/
#define DT_DRV_COMPAT st_lsm6dso
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include "lsm6dso.h"
LOG_MODULE_REGISTER(LSM6DSO, CONFIG_SENSOR_LOG_LEVEL);
static const uint16_t lsm6dso_odr_map[] = {0, 12, 26, 52, 104, 208, 416, 833,
1660, 3330, 6660};
static int lsm6dso_freq_to_odr_val(uint16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_odr_map); i++) {
if (freq == lsm6dso_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
static int lsm6dso_odr_to_freq_val(uint16_t odr)
{
/* for valid index, return value from map */
if (odr < ARRAY_SIZE(lsm6dso_odr_map)) {
return lsm6dso_odr_map[odr];
}
/* invalid index, return last entry */
return lsm6dso_odr_map[ARRAY_SIZE(lsm6dso_odr_map) - 1];
}
static const uint16_t lsm6dso_accel_fs_map[] = {2, 16, 4, 8};
static int lsm6dso_accel_range_to_fs_val(int32_t range, bool double_range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_accel_fs_map); i++) {
if (range == (lsm6dso_accel_fs_map[i] << double_range)) {
return i;
}
}
return -EINVAL;
}
static int lsm6dso_accel_fs_val_to_gain(int fs, bool double_range)
{
/* Range of ±2G has a LSB of GAIN_UNIT_XL, thus divide by 2 */
return double_range ?
lsm6dso_accel_fs_map[fs] * GAIN_UNIT_XL :
lsm6dso_accel_fs_map[fs] * GAIN_UNIT_XL / 2;
}
static const uint16_t lsm6dso_gyro_fs_map[] = {250, 125, 500, 0, 1000, 0, 2000};
static const uint16_t lsm6dso_gyro_fs_sens[] = {2, 1, 4, 0, 8, 0, 16};
static int lsm6dso_gyro_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lsm6dso_gyro_fs_map); i++) {
if (range == lsm6dso_gyro_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
static inline int lsm6dso_reboot(const struct device *dev)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
if (lsm6dso_boot_set(ctx, 1) < 0) {
return -EIO;
}
/* Wait sensor turn-on time as per datasheet */
k_busy_wait(35 * USEC_PER_MSEC);
return 0;
}
static int lsm6dso_accel_set_fs_raw(const struct device *dev, uint8_t fs)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
if (lsm6dso_xl_full_scale_set(ctx, fs) < 0) {
return -EIO;
}
data->accel_fs = fs;
return 0;
}
static int lsm6dso_accel_set_odr_raw(const struct device *dev, uint8_t odr)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
if (lsm6dso_xl_data_rate_set(ctx, odr) < 0) {
return -EIO;
}
data->accel_freq = lsm6dso_odr_to_freq_val(odr);
return 0;
}
static int lsm6dso_gyro_set_fs_raw(const struct device *dev, uint8_t fs)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
if (lsm6dso_gy_full_scale_set(ctx, fs) < 0) {
return -EIO;
}
return 0;
}
static int lsm6dso_gyro_set_odr_raw(const struct device *dev, uint8_t odr)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
if (lsm6dso_gy_data_rate_set(ctx, odr) < 0) {
return -EIO;
}
return 0;
}
static int lsm6dso_accel_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = lsm6dso_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dso_accel_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set accelerometer sampling rate");
return -EIO;
}
return 0;
}
static int lsm6dso_accel_range_set(const struct device *dev, int32_t range)
{
int fs;
struct lsm6dso_data *data = dev->data;
const struct lsm6dso_config *cfg = dev->config;
bool range_double = !!(cfg->accel_range & ACCEL_RANGE_DOUBLE);
fs = lsm6dso_accel_range_to_fs_val(range, range_double);
if (fs < 0) {
return fs;
}
if (lsm6dso_accel_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set accelerometer full-scale");
return -EIO;
}
data->acc_gain = lsm6dso_accel_fs_val_to_gain(fs, range_double);
return 0;
}
static int lsm6dso_accel_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return lsm6dso_accel_range_set(dev, sensor_ms2_to_g(val));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_accel_odr_set(dev, val->val1);
default:
LOG_DBG("Accel attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_gyro_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = lsm6dso_freq_to_odr_val(freq);
if (odr < 0) {
return odr;
}
if (lsm6dso_gyro_set_odr_raw(dev, odr) < 0) {
LOG_DBG("failed to set gyroscope sampling rate");
return -EIO;
}
return 0;
}
static int lsm6dso_gyro_range_set(const struct device *dev, int32_t range)
{
int fs;
struct lsm6dso_data *data = dev->data;
fs = lsm6dso_gyro_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lsm6dso_gyro_set_fs_raw(dev, fs) < 0) {
LOG_DBG("failed to set gyroscope full-scale");
return -EIO;
}
data->gyro_gain = (lsm6dso_gyro_fs_sens[fs] * GAIN_UNIT_G);
return 0;
}
static int lsm6dso_gyro_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return lsm6dso_gyro_range_set(dev, sensor_rad_to_degrees(val));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lsm6dso_gyro_odr_set(dev, val->val1);
default:
LOG_DBG("Gyro attribute not supported.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
#if defined(CONFIG_LSM6DSO_SENSORHUB)
struct lsm6dso_data *data = dev->data;
#endif /* CONFIG_LSM6DSO_SENSORHUB */
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
return lsm6dso_accel_config(dev, chan, attr, val);
case SENSOR_CHAN_GYRO_XYZ:
return lsm6dso_gyro_config(dev, chan, attr, val);
#if defined(CONFIG_LSM6DSO_SENSORHUB)
case SENSOR_CHAN_MAGN_XYZ:
case SENSOR_CHAN_PRESS:
case SENSOR_CHAN_HUMIDITY:
if (!data->shub_inited) {
LOG_ERR("shub not inited.");
return -ENOTSUP;
}
return lsm6dso_shub_config(dev, chan, attr, val);
#endif /* CONFIG_LSM6DSO_SENSORHUB */
default:
LOG_WRN("attr_set() not supported on this channel.");
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_sample_fetch_accel(const struct device *dev)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
if (lsm6dso_acceleration_raw_get(ctx, data->acc) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
return 0;
}
static int lsm6dso_sample_fetch_gyro(const struct device *dev)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
if (lsm6dso_angular_rate_raw_get(ctx, data->gyro) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
return 0;
}
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
static int lsm6dso_sample_fetch_temp(const struct device *dev)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *data = dev->data;
if (lsm6dso_temperature_raw_get(ctx, &data->temp_sample) < 0) {
LOG_DBG("Failed to read sample");
return -EIO;
}
return 0;
}
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
static int lsm6dso_sample_fetch_shub(const struct device *dev)
{
if (lsm6dso_shub_fetch_external_devs(dev) < 0) {
LOG_DBG("failed to read ext shub devices");
return -EIO;
}
return 0;
}
#endif /* CONFIG_LSM6DSO_SENSORHUB */
static int lsm6dso_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
#if defined(CONFIG_LSM6DSO_SENSORHUB)
struct lsm6dso_data *data = dev->data;
#endif /* CONFIG_LSM6DSO_SENSORHUB */
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dso_sample_fetch_accel(dev);
break;
case SENSOR_CHAN_GYRO_XYZ:
lsm6dso_sample_fetch_gyro(dev);
break;
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dso_sample_fetch_temp(dev);
break;
#endif
case SENSOR_CHAN_ALL:
lsm6dso_sample_fetch_accel(dev);
lsm6dso_sample_fetch_gyro(dev);
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
lsm6dso_sample_fetch_temp(dev);
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
if (data->shub_inited) {
lsm6dso_sample_fetch_shub(dev);
}
#endif
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lsm6dso_accel_convert(struct sensor_value *val, int raw_val,
uint32_t sensitivity)
{
int64_t dval;
/* Sensitivity is exposed in ug/LSB */
/* Convert to m/s^2 */
dval = (int64_t)(raw_val) * sensitivity * SENSOR_G_DOUBLE;
val->val1 = (int32_t)(dval / 1000000);
val->val2 = (int32_t)(dval % 1000000);
}
static inline int lsm6dso_accel_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data,
uint32_t sensitivity)
{
uint8_t i;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
lsm6dso_accel_convert(val, data->acc[0], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Y:
lsm6dso_accel_convert(val, data->acc[1], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Z:
lsm6dso_accel_convert(val, data->acc[2], sensitivity);
break;
case SENSOR_CHAN_ACCEL_XYZ:
for (i = 0; i < 3; i++) {
lsm6dso_accel_convert(val++, data->acc[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_accel_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
return lsm6dso_accel_get_channel(chan, val, data, data->acc_gain);
}
static inline void lsm6dso_gyro_convert(struct sensor_value *val, int raw_val,
uint32_t sensitivity)
{
int64_t dval;
/* Sensitivity is exposed in udps/LSB */
/* Convert to rad/s */
dval = (int64_t)(raw_val) * sensitivity * SENSOR_DEG2RAD_DOUBLE;
val->val1 = (int32_t)(dval / 1000000);
val->val2 = (int32_t)(dval % 1000000);
}
static inline int lsm6dso_gyro_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data,
uint32_t sensitivity)
{
uint8_t i;
switch (chan) {
case SENSOR_CHAN_GYRO_X:
lsm6dso_gyro_convert(val, data->gyro[0], sensitivity);
break;
case SENSOR_CHAN_GYRO_Y:
lsm6dso_gyro_convert(val, data->gyro[1], sensitivity);
break;
case SENSOR_CHAN_GYRO_Z:
lsm6dso_gyro_convert(val, data->gyro[2], sensitivity);
break;
case SENSOR_CHAN_GYRO_XYZ:
for (i = 0; i < 3; i++) {
lsm6dso_gyro_convert(val++, data->gyro[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lsm6dso_gyro_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
return lsm6dso_gyro_get_channel(chan, val, data, data->gyro_gain);
}
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
static void lsm6dso_gyro_channel_get_temp(struct sensor_value *val,
struct lsm6dso_data *data)
{
/* val = temp_sample / 256 + 25 */
val->val1 = data->temp_sample / 256 + 25;
val->val2 = (data->temp_sample % 256) * (1000000 / 256);
}
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
static inline void lsm6dso_magn_convert(struct sensor_value *val, int raw_val,
uint16_t sensitivity)
{
double dval;
/* Sensitivity is exposed in mgauss/LSB */
dval = (double)(raw_val * sensitivity);
val->val1 = (int32_t)dval / 1000000;
val->val2 = (int32_t)dval % 1000000;
}
static inline int lsm6dso_magn_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lsm6dso_data *data)
{
int16_t sample[3];
int idx;
idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_MAGN_XYZ);
if (idx < 0) {
LOG_DBG("external magn not supported");
return -ENOTSUP;
}
sample[0] = sys_le16_to_cpu((int16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8)));
sample[1] = sys_le16_to_cpu((int16_t)(data->ext_data[idx][2] |
(data->ext_data[idx][3] << 8)));
sample[2] = sys_le16_to_cpu((int16_t)(data->ext_data[idx][4] |
(data->ext_data[idx][5] << 8)));
switch (chan) {
case SENSOR_CHAN_MAGN_X:
lsm6dso_magn_convert(val, sample[0], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Y:
lsm6dso_magn_convert(val, sample[1], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_Z:
lsm6dso_magn_convert(val, sample[2], data->magn_gain);
break;
case SENSOR_CHAN_MAGN_XYZ:
lsm6dso_magn_convert(val, sample[0], data->magn_gain);
lsm6dso_magn_convert(val + 1, sample[1], data->magn_gain);
lsm6dso_magn_convert(val + 2, sample[2], data->magn_gain);
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lsm6dso_hum_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
float rh;
int16_t raw_val;
struct hts221_data *ht = &data->hts221;
int idx;
idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_HUMIDITY);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le16_to_cpu((int16_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8)));
/* find relative humidty by linear interpolation */
rh = (ht->y1 - ht->y0) * raw_val + ht->x1 * ht->y0 - ht->x0 * ht->y1;
rh /= (ht->x1 - ht->x0);
/* convert humidity to integer and fractional part */
val->val1 = rh;
val->val2 = rh * 1000000;
}
static inline void lsm6dso_press_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
int32_t raw_val;
int idx;
idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le32_to_cpu((int32_t)(data->ext_data[idx][0] |
(data->ext_data[idx][1] << 8) |
(data->ext_data[idx][2] << 16)));
/* Pressure sensitivity is 4096 LSB/hPa */
/* Convert raw_val to val in kPa */
val->val1 = (raw_val >> 12) / 10;
val->val2 = (raw_val >> 12) % 10 * 100000 +
(((int32_t)((raw_val) & 0x0FFF) * 100000L) >> 12);
}
static inline void lsm6dso_temp_convert(struct sensor_value *val,
struct lsm6dso_data *data)
{
int16_t raw_val;
int idx;
idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_PRESS);
if (idx < 0) {
LOG_DBG("external press/temp not supported");
return;
}
raw_val = sys_le16_to_cpu((int16_t)(data->ext_data[idx][3] |
(data->ext_data[idx][4] << 8)));
/* Temperature sensitivity is 100 LSB/deg C */
val->val1 = raw_val / 100;
val->val2 = (int32_t)raw_val % 100 * (10000);
}
#endif
static int lsm6dso_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct lsm6dso_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
lsm6dso_accel_channel_get(chan, val, data);
break;
case SENSOR_CHAN_GYRO_X:
case SENSOR_CHAN_GYRO_Y:
case SENSOR_CHAN_GYRO_Z:
case SENSOR_CHAN_GYRO_XYZ:
lsm6dso_gyro_channel_get(chan, val, data);
break;
#if defined(CONFIG_LSM6DSO_ENABLE_TEMP)
case SENSOR_CHAN_DIE_TEMP:
lsm6dso_gyro_channel_get_temp(val, data);
break;
#endif
#if defined(CONFIG_LSM6DSO_SENSORHUB)
case SENSOR_CHAN_MAGN_X:
case SENSOR_CHAN_MAGN_Y:
case SENSOR_CHAN_MAGN_Z:
case SENSOR_CHAN_MAGN_XYZ:
if (!data->shub_inited) {
LOG_ERR("attr_set() shub not inited.");
return -ENOTSUP;
}
lsm6dso_magn_get_channel(chan, val, data);
break;
case SENSOR_CHAN_HUMIDITY:
if (!data->shub_inited) {
LOG_ERR("attr_set() shub not inited.");
return -ENOTSUP;
}
lsm6dso_hum_convert(val, data);
break;
case SENSOR_CHAN_PRESS:
if (!data->shub_inited) {
LOG_ERR("attr_set() shub not inited.");
return -ENOTSUP;
}
lsm6dso_press_convert(val, data);
break;
case SENSOR_CHAN_AMBIENT_TEMP:
if (!data->shub_inited) {
LOG_ERR("attr_set() shub not inited.");
return -ENOTSUP;
}
lsm6dso_temp_convert(val, data);
break;
#endif
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api lsm6dso_driver_api = {
.attr_set = lsm6dso_attr_set,
#if CONFIG_LSM6DSO_TRIGGER
.trigger_set = lsm6dso_trigger_set,
#endif
.sample_fetch = lsm6dso_sample_fetch,
.channel_get = lsm6dso_channel_get,
};
static int lsm6dso_init_chip(const struct device *dev)
{
const struct lsm6dso_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lsm6dso_data *lsm6dso = dev->data;
uint8_t chip_id, master_on;
uint8_t odr, fs;
/* All registers except 0x01 are different between banks, including the WHO_AM_I
* register and the register used for a SW reset. If the lsm6dso wasn't on the user
* bank when it reset, then both the chip id check and the sw reset will fail unless we
* set the bank now.
*/
if (lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK) < 0) {
LOG_DBG("Failed to set user bank");
return -EIO;
}
if (lsm6dso_device_id_get(ctx, &chip_id) < 0) {
LOG_DBG("Failed reading chip id");
return -EIO;
}
LOG_INF("chip id 0x%x", chip_id);
if (chip_id != LSM6DSO_ID) {
LOG_DBG("Invalid chip id 0x%x", chip_id);
return -EIO;
}
/* I3C disable stay preserved after s/w reset */
if (lsm6dso_i3c_disable_set(ctx, LSM6DSO_I3C_DISABLE) < 0) {
LOG_DBG("Failed to disable I3C");
return -EIO;
}
/* Per AN5192 §7.2.1, "… when applying the software reset procedure, the I2C master
* must be disabled, followed by a 300 μs wait."
*/
if (lsm6dso_sh_master_get(ctx, &master_on) < 0) {
LOG_DBG("Failed to get I2C_MASTER status");
return -EIO;
}
if (master_on) {
LOG_DBG("Disable shub before reset");
lsm6dso_sh_master_set(ctx, 0);
k_busy_wait(300);
}
/* reset device */
if (lsm6dso_reset_set(ctx, 1) < 0) {
return -EIO;
}
k_busy_wait(100);
/* set accel power mode */
LOG_DBG("accel pm is %d", cfg->accel_pm);
switch (cfg->accel_pm) {
default:
case 0:
lsm6dso_xl_power_mode_set(ctx, LSM6DSO_HIGH_PERFORMANCE_MD);
break;
case 1:
lsm6dso_xl_power_mode_set(ctx, LSM6DSO_LOW_NORMAL_POWER_MD);
break;
case 2:
lsm6dso_xl_power_mode_set(ctx, LSM6DSO_ULTRA_LOW_POWER_MD);
break;
}
fs = cfg->accel_range & ACCEL_RANGE_MASK;
LOG_DBG("accel range is %d", fs);
if (lsm6dso_accel_set_fs_raw(dev, fs) < 0) {
LOG_ERR("failed to set accelerometer range %d", fs);
return -EIO;
}
lsm6dso->acc_gain = lsm6dso_accel_fs_val_to_gain(fs, cfg->accel_range & ACCEL_RANGE_DOUBLE);
odr = cfg->accel_odr;
LOG_DBG("accel odr is %d", odr);
lsm6dso->accel_freq = lsm6dso_odr_to_freq_val(odr);
if (lsm6dso_accel_set_odr_raw(dev, odr) < 0) {
LOG_ERR("failed to set accelerometer odr %d", odr);
return -EIO;
}
/* set gyro power mode */
LOG_DBG("gyro pm is %d", cfg->gyro_pm);
switch (cfg->gyro_pm) {
default:
case 0:
lsm6dso_gy_power_mode_set(ctx, LSM6DSO_GY_HIGH_PERFORMANCE);
break;
case 1:
lsm6dso_gy_power_mode_set(ctx, LSM6DSO_GY_NORMAL);
break;
}
fs = cfg->gyro_range;
LOG_DBG("gyro range is %d", fs);
if (lsm6dso_gyro_set_fs_raw(dev, fs) < 0) {
LOG_ERR("failed to set gyroscope range %d", fs);
return -EIO;
}
lsm6dso->gyro_gain = (lsm6dso_gyro_fs_sens[fs] * GAIN_UNIT_G);
odr = cfg->gyro_odr;
LOG_DBG("gyro odr is %d", odr);
lsm6dso->gyro_freq = lsm6dso_odr_to_freq_val(odr);
if (lsm6dso_gyro_set_odr_raw(dev, odr) < 0) {
LOG_ERR("failed to set gyroscope odr %d", odr);
return -EIO;
}
/* Set FIFO bypass mode */
if (lsm6dso_fifo_mode_set(ctx, LSM6DSO_BYPASS_MODE) < 0) {
LOG_DBG("failed to set FIFO mode");
return -EIO;
}
if (lsm6dso_block_data_update_set(ctx, 1) < 0) {
LOG_DBG("failed to set BDU mode");
return -EIO;
}
return 0;
}
static int lsm6dso_init(const struct device *dev)
{
#ifdef CONFIG_LSM6DSO_TRIGGER
const struct lsm6dso_config *cfg = dev->config;
#endif
struct lsm6dso_data *data = dev->data;
LOG_INF("Initialize device %s", dev->name);
data->dev = dev;
if (lsm6dso_init_chip(dev) < 0) {
LOG_DBG("failed to initialize chip");
return -EIO;
}
#ifdef CONFIG_LSM6DSO_TRIGGER
if (cfg->trig_enabled) {
if (lsm6dso_init_interrupt(dev) < 0) {
LOG_ERR("Failed to initialize interrupt.");
return -EIO;
}
}
#endif
#ifdef CONFIG_LSM6DSO_SENSORHUB
data->shub_inited = true;
if (lsm6dso_shub_init(dev) < 0) {
LOG_INF("shub: no external chips found");
data->shub_inited = false;
}
#endif
return 0;
}
#if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0
#warning "LSM6DSO driver enabled without any devices"
#endif
/*
* Device creation macro, shared by LSM6DSO_DEFINE_SPI() and
* LSM6DSO_DEFINE_I2C().
*/
#define LSM6DSO_DEVICE_INIT(inst) \
SENSOR_DEVICE_DT_INST_DEFINE(inst, \
lsm6dso_init, \
NULL, \
&lsm6dso_data_##inst, \
&lsm6dso_config_##inst, \
POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, \
&lsm6dso_driver_api);
/*
* Instantiation macros used when a device is on a SPI bus.
*/
#ifdef CONFIG_LSM6DSO_TRIGGER
#define LSM6DSO_CFG_IRQ(inst) \
.trig_enabled = true, \
.gpio_drdy = GPIO_DT_SPEC_INST_GET(inst, irq_gpios), \
.int_pin = DT_INST_PROP(inst, int_pin)
#else
#define LSM6DSO_CFG_IRQ(inst)
#endif /* CONFIG_LSM6DSO_TRIGGER */
#define LSM6DSO_SPI_OP (SPI_WORD_SET(8) | \
SPI_OP_MODE_MASTER | \
SPI_MODE_CPOL | \
SPI_MODE_CPHA) \
#define LSM6DSO_CONFIG_COMMON(inst) \
.accel_pm = DT_INST_PROP(inst, accel_pm), \
.accel_odr = DT_INST_PROP(inst, accel_odr), \
.accel_range = DT_INST_PROP(inst, accel_range) | \
(DT_NODE_HAS_COMPAT(DT_DRV_INST(inst), st_lsm6dso32) ? \
ACCEL_RANGE_DOUBLE : 0), \
.gyro_pm = DT_INST_PROP(inst, gyro_pm), \
.gyro_odr = DT_INST_PROP(inst, gyro_odr), \
.gyro_range = DT_INST_PROP(inst, gyro_range), \
.drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \
(LSM6DSO_CFG_IRQ(inst)), ())
#define LSM6DSO_CONFIG_SPI(inst) \
{ \
.ctx = { \
.read_reg = \
(stmdev_read_ptr) stmemsc_spi_read, \
.write_reg = \
(stmdev_write_ptr) stmemsc_spi_write, \
.handle = \
(void *)&lsm6dso_config_##inst.stmemsc_cfg, \
}, \
.stmemsc_cfg = { \
.spi = SPI_DT_SPEC_INST_GET(inst, \
LSM6DSO_SPI_OP, \
0), \
}, \
LSM6DSO_CONFIG_COMMON(inst) \
}
/*
* Instantiation macros used when a device is on an I2C bus.
*/
#define LSM6DSO_CONFIG_I2C(inst) \
{ \
.ctx = { \
.read_reg = \
(stmdev_read_ptr) stmemsc_i2c_read, \
.write_reg = \
(stmdev_write_ptr) stmemsc_i2c_write, \
.handle = \
(void *)&lsm6dso_config_##inst.stmemsc_cfg, \
}, \
.stmemsc_cfg = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
}, \
LSM6DSO_CONFIG_COMMON(inst) \
}
/*
* Main instantiation macro. Use of COND_CODE_1() selects the right
* bus-specific macro at preprocessor time.
*/
#define LSM6DSO_DEFINE(inst) \
static struct lsm6dso_data lsm6dso_data_##inst; \
static const struct lsm6dso_config lsm6dso_config_##inst = \
COND_CODE_1(DT_INST_ON_BUS(inst, spi), \
(LSM6DSO_CONFIG_SPI(inst)), \
(LSM6DSO_CONFIG_I2C(inst))); \
LSM6DSO_DEVICE_INIT(inst)
DT_INST_FOREACH_STATUS_OKAY(LSM6DSO_DEFINE)