zephyr/drivers/timer/mchp_xec_rtos_timer.c

449 lines
12 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
* Copyright (c) 2019 Microchip Technology Incorporated
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_rtos_timer
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <soc.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/arch/arm/aarch32/cortex_m/cmsis.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_SMP), "XEC RTOS timer doesn't support SMP");
BUILD_ASSERT(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC == 32768,
"XEC RTOS timer HW frequency is fixed at 32768");
#define DEBUG_RTOS_TIMER 0
#if DEBUG_RTOS_TIMER != 0
/* Enable feature to halt timer on JTAG/SWD CPU halt */
#define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START \
| MCHP_RTMR_CTRL_HW_HALT_EN)
#else
#define TIMER_START_VAL (MCHP_RTMR_CTRL_BLK_EN | MCHP_RTMR_CTRL_START)
#endif
/*
* Overview:
*
* This driver enables the Microchip XEC 32KHz based RTOS timer as the Zephyr
* system timer. It supports both legacy ("tickful") mode as well as
* TICKLESS_KERNEL. The XEC RTOS timer is a down counter with a fixed
* frequency of 32768 Hz. The driver is based upon the Intel local APIC
* timer driver.
* Configuration:
*
* CONFIG_MCHP_XEC_RTOS_TIMER=y
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must be set to 32768.
*
* To reduce truncation errors from accumulating due to conversion
* to/from time, ticks, and HW cycles set ticks per second equal to
* the frequency. With tickless kernel mode enabled the kernel will not
* program a periodic timer at this fast rate.
* CONFIG_SYS_CLOCK_TICKS_PER_SEC=32768
*/
#define CYCLES_PER_TICK \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define TIMER_REGS \
((struct rtmr_regs *)DT_INST_REG_ADDR(0))
#define ECIA_XEC_REGS \
((struct ecia_regs *)DT_REG_ADDR(DT_NODELABEL(ecia)))
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
#define PCR_XEC_REGS \
((struct pcr_regs *)DT_REG_ADDR(DT_NODELABEL(pcr)))
/*
* pcrs property at index 0 is register index into array of 32-bit PCR SLP_EN,
* CLK_REQ, or RST_EN registers. Property at index 1 is the bit position.
*/ /*DT_PROP_BY_IDX(DT_NODELABEL(kbc0), girqs, 0)*/
#define BTMR32_0_PCR_REG_IDX (DT_PROP_BY_IDX(DT_NODELABEL(timer4), pcrs, 0))
#define BTMR32_0_PCR_BITPOS (DT_PROP_BY_IDX(DT_NODELABEL(timer4), pcrs, 1))
#define BTMR32_0_REGS \
((struct btmr_regs *)(DT_REG_ADDR(DT_NODELABEL(timer4))))
#endif
/* Mask off bits[31:28] of 32-bit count */
#define TIMER_MAX 0x0fffffffu
#define TIMER_COUNT_MASK 0x0fffffffu
#define TIMER_STOPPED 0xf0000000u
/* Adjust cycle count programmed into timer for HW restart latency */
#define TIMER_ADJUST_LIMIT 2
#define TIMER_ADJUST_CYCLES 1
/* max number of ticks we can load into the timer in one shot */
#define MAX_TICKS (TIMER_MAX / CYCLES_PER_TICK)
#define TIMER_GIRQ DT_INST_PROP_BY_IDX(0, girqs, 0)
#define TIMER_GIRQ_POS DT_INST_PROP_BY_IDX(0, girqs, 1)
#define TIMER_NVIC_NO DT_INST_IRQN(0)
#define TIMER_NVIC_PRIO DT_INST_IRQ(0, priority)
/*
* The spinlock protects all access to the RTMR registers, as well as
* 'total_cycles', 'last_announcement', and 'cached_icr'.
*
* One important invariant that must be observed: `total_cycles` + `cached_icr`
* is always an integral multiple of CYCLE_PER_TICK; this is, timer interrupts
* are only ever scheduled to occur at tick boundaries.
*/
static struct k_spinlock lock;
static uint32_t total_cycles;
static uint32_t cached_icr = CYCLES_PER_TICK;
/*
* NOTE: using inline for speed instead of call to external SoC function.
* MEC GIRQ numbers are documented as 8 to 26, check and convert to zero
* based index.
*/
static inline void girq_src_clr(int girq, int bitpos)
{
if ((girq < 8) || (girq > 26)) {
return;
}
ECIA_XEC_REGS->GIRQ[girq - 8].SRC = BIT(bitpos);
}
static inline void girq_src_en(int girq, int bitpos)
{
if ((girq < 8) || (girq > 26)) {
return;
}
ECIA_XEC_REGS->GIRQ[girq - 8].EN_SET = BIT(bitpos);
}
static inline void girq_src_dis(int girq, int bitpos)
{
if ((girq < 8) || (girq > 26)) {
return;
}
ECIA_XEC_REGS->GIRQ[girq - 8].EN_CLR = BIT(bitpos);
}
static void timer_restart(uint32_t countdown)
{
TIMER_REGS->CTRL = 0U;
TIMER_REGS->CTRL = MCHP_RTMR_CTRL_BLK_EN;
TIMER_REGS->PRLD = countdown;
TIMER_REGS->CTRL = TIMER_START_VAL;
}
/*
* Read the RTOS timer counter handling the case where the timer
* has been reloaded within 1 32KHz clock of reading its count register.
* The RTOS timer hardware must synchronize the write to its control register
* on the AHB clock domain with the 32KHz clock domain of its internal logic.
* This synchronization can take from nearly 0 time up to 1 32KHz clock as it
* depends upon which 48MHz AHB clock with a 32KHz period the register write
* was on. We detect the timer is in the load state by checking the read-only
* count register and the START bit in the control register. If count register
* is 0 and the START bit is set then the timer has been started and is in the
* process of moving the preload register value into the count register.
*/
static inline uint32_t timer_count(void)
{
uint32_t ccr = TIMER_REGS->CNT;
if ((ccr == 0) && (TIMER_REGS->CTRL & MCHP_RTMR_CTRL_START)) {
ccr = cached_icr;
}
return ccr;
}
#ifdef CONFIG_TICKLESS_KERNEL
static uint32_t last_announcement; /* last time we called sys_clock_announce() */
/*
* Request a timeout n Zephyr ticks in the future from now.
* Requested number of ticks in the future of n <= 1 means the kernel wants
* the tick announced as soon as possible, ideally no more than one tick
* in the future.
*
* Per comment below we don't clear RTMR pending interrupt.
* RTMR counter register is read-only and is loaded from the preload
* register by a 0->1 transition of the control register start bit.
* Writing a new value to preload only takes effect once the count
* register reaches 0.
*/
void sys_clock_set_timeout(int32_t n, bool idle)
{
ARG_UNUSED(idle);
uint32_t ccr, temp;
int full_ticks; /* number of complete ticks we'll wait */
uint32_t full_cycles; /* full_ticks represented as cycles */
uint32_t partial_cycles; /* number of cycles to first tick boundary */
if (idle && (n == K_TICKS_FOREVER)) {
/*
* We are not in a locked section. Are writes to two
* global objects safe from pre-emption?
*/
TIMER_REGS->CTRL = 0U; /* stop timer */
cached_icr = TIMER_STOPPED;
return;
}
if (n < 1) {
full_ticks = 0;
} else if ((n == K_TICKS_FOREVER) || (n > MAX_TICKS)) {
full_ticks = MAX_TICKS - 1;
} else {
full_ticks = n - 1;
}
full_cycles = full_ticks * CYCLES_PER_TICK;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
/* turn off to clear any pending interrupt status */
TIMER_REGS->CTRL = 0u;
girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
NVIC_ClearPendingIRQ(TIMER_NVIC_NO);
temp = total_cycles;
temp += (cached_icr - ccr);
temp &= TIMER_COUNT_MASK;
total_cycles = temp;
partial_cycles = CYCLES_PER_TICK - (total_cycles % CYCLES_PER_TICK);
cached_icr = full_cycles + partial_cycles;
/* adjust for up to one 32KHz cycle startup time */
temp = cached_icr;
if (temp > TIMER_ADJUST_LIMIT) {
temp -= TIMER_ADJUST_CYCLES;
}
timer_restart(temp);
k_spin_unlock(&lock, key);
}
/*
* Return the number of Zephyr ticks elapsed from last call to
* sys_clock_announce in the ISR. The caller casts uint32_t to int32_t.
* We must make sure bit[31] is 0 in the return value.
*/
uint32_t sys_clock_elapsed(void)
{
uint32_t ccr;
uint32_t ticks;
int32_t elapsed;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
/* It may not look efficient but the compiler does a good job */
elapsed = (int32_t)total_cycles - (int32_t)last_announcement;
if (elapsed < 0) {
elapsed = -1 * elapsed;
}
ticks = (uint32_t)elapsed;
ticks += cached_icr - ccr;
ticks /= CYCLES_PER_TICK;
ticks &= TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ticks;
}
static void xec_rtos_timer_isr(const void *arg)
{
ARG_UNUSED(arg);
uint32_t cycles;
int32_t ticks;
k_spinlock_key_t key = k_spin_lock(&lock);
girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
/* Restart the timer as early as possible to minimize drift... */
timer_restart(MAX_TICKS * CYCLES_PER_TICK);
cycles = cached_icr;
cached_icr = MAX_TICKS * CYCLES_PER_TICK;
total_cycles += cycles;
total_cycles &= TIMER_COUNT_MASK;
/* handle wrap by using (power of 2) - 1 mask */
ticks = total_cycles - last_announcement;
ticks &= TIMER_COUNT_MASK;
ticks /= CYCLES_PER_TICK;
last_announcement = total_cycles;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
}
#else
/* Non-tickless kernel build. */
static void xec_rtos_timer_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
/* Restart the timer as early as possible to minimize drift... */
timer_restart(cached_icr);
uint32_t temp = total_cycles + CYCLES_PER_TICK;
total_cycles = temp & TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
sys_clock_announce(1);
}
uint32_t sys_clock_elapsed(void)
{
return 0U;
}
#endif /* CONFIG_TICKLESS_KERNEL */
/*
* Warning RTOS timer resolution is 30.5 us.
* This is called by two code paths:
* 1. Kernel call to k_cycle_get_32() -> arch_k_cycle_get_32() -> here.
* The kernel is casting return to (int) and using it uncasted in math
* expressions with int types. Expression result is stored in an int.
* 2. If CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT is not defined then
* z_impl_k_busy_wait calls here. This code path uses the value as uint32_t.
*
*/
uint32_t sys_clock_cycle_get_32(void)
{
uint32_t ret;
uint32_t ccr;
k_spinlock_key_t key = k_spin_lock(&lock);
ccr = timer_count();
ret = (total_cycles + (cached_icr - ccr)) & TIMER_COUNT_MASK;
k_spin_unlock(&lock, key);
return ret;
}
void sys_clock_idle_exit(void)
{
if (cached_icr == TIMER_STOPPED) {
cached_icr = CYCLES_PER_TICK;
timer_restart(cached_icr);
}
}
void sys_clock_disable(void)
{
TIMER_REGS->CTRL = 0U;
}
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
/*
* We implement custom busy wait using a MEC1501 basic timer running on
* the 48MHz clock domain. This code is here for future power management
* save/restore of the timer context.
*/
/*
* 32-bit basic timer 0 configured for 1MHz count up, auto-reload,
* and no interrupt generation.
*/
void arch_busy_wait(uint32_t usec_to_wait)
{
if (usec_to_wait == 0) {
return;
}
uint32_t start = BTMR32_0_REGS->CNT;
for (;;) {
uint32_t curr = BTMR32_0_REGS->CNT;
if ((curr - start) >= usec_to_wait) {
break;
}
}
}
#endif
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
#ifdef CONFIG_TICKLESS_KERNEL
cached_icr = MAX_TICKS;
#endif
TIMER_REGS->CTRL = 0u;
girq_src_clr(TIMER_GIRQ, TIMER_GIRQ_POS);
girq_src_dis(TIMER_GIRQ, TIMER_GIRQ_POS);
NVIC_ClearPendingIRQ(TIMER_NVIC_NO);
IRQ_CONNECT(TIMER_NVIC_NO, TIMER_NVIC_PRIO, xec_rtos_timer_isr, 0, 0);
irq_enable(TIMER_NVIC_NO);
girq_src_en(TIMER_GIRQ, TIMER_GIRQ_POS);
#ifdef CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT
uint32_t btmr_ctrl = (MCHP_BTMR_CTRL_ENABLE
| MCHP_BTMR_CTRL_AUTO_RESTART
| MCHP_BTMR_CTRL_COUNT_UP
| (47UL << MCHP_BTMR_CTRL_PRESCALE_POS));
#if CONFIG_SOC_SERIES_MEC1501X
mchp_pcr_periph_slp_ctrl(PCR_B32TMR0, 0);
#else
PCR_XEC_REGS->SLP_EN[BTMR32_0_PCR_REG_IDX] &= ~BIT(BTMR32_0_PCR_BITPOS);
#endif
BTMR32_0_REGS->CTRL = MCHP_BTMR_CTRL_SOFT_RESET;
BTMR32_0_REGS->CTRL = btmr_ctrl;
BTMR32_0_REGS->PRLD = UINT32_MAX;
btmr_ctrl |= MCHP_BTMR_CTRL_START;
timer_restart(cached_icr);
/* wait for RTOS timer to load count register from preload */
while (TIMER_REGS->CNT == 0) {
;
}
BTMR32_0_REGS->CTRL = btmr_ctrl;
#else
timer_restart(cached_icr);
#endif
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);