zephyr/soc/nordic/common/dmm.c

298 lines
8.6 KiB
C

/*
* Copyright (c) 2024 Nordic Semiconductor ASA
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include <zephyr/cache.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/sys_heap.h>
#include <zephyr/mem_mgmt/mem_attr.h>
#include "dmm.h"
#define _FILTER_MEM(node_id, fn) \
COND_CODE_1(DT_NODE_HAS_PROP(node_id, zephyr_memory_attr), (fn(node_id)), ())
#define DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(fn) \
DT_FOREACH_STATUS_OKAY_NODE_VARGS(_FILTER_MEM, fn)
#define __BUILD_LINKER_END_VAR(_name) DT_CAT3(__, _name, _end)
#define _BUILD_LINKER_END_VAR(node_id) \
__BUILD_LINKER_END_VAR(DT_STRING_UNQUOTED(node_id, zephyr_memory_region))
#define _BUILD_MEM_REGION(node_id) \
{.dt_addr = DT_REG_ADDR(node_id), \
.dt_size = DT_REG_SIZE(node_id), \
.dt_attr = DT_PROP(node_id, zephyr_memory_attr), \
.dt_align = DMM_REG_ALIGN_SIZE(node_id), \
.dt_allc = &_BUILD_LINKER_END_VAR(node_id)},
/* Generate declarations of linker variables used to determine size of preallocated variables
* stored in memory sections spanning over memory regions.
* These are used to determine memory left for dynamic bounce buffer allocator to work with.
*/
#define _DECLARE_LINKER_VARS(node_id) extern uint32_t _BUILD_LINKER_END_VAR(node_id);
DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(_DECLARE_LINKER_VARS);
struct dmm_region {
uintptr_t dt_addr;
size_t dt_size;
uint32_t dt_attr;
uint32_t dt_align;
void *dt_allc;
};
struct dmm_heap {
struct sys_heap heap;
const struct dmm_region *region;
};
static const struct dmm_region dmm_regions[] = {
DT_MEMORY_REGION_FOREACH_STATUS_OKAY_NODE(_BUILD_MEM_REGION)
};
struct {
struct dmm_heap dmm_heaps[ARRAY_SIZE(dmm_regions)];
} dmm_heaps_data;
static struct dmm_heap *dmm_heap_find(void *region)
{
struct dmm_heap *dh;
for (size_t idx = 0; idx < ARRAY_SIZE(dmm_heaps_data.dmm_heaps); idx++) {
dh = &dmm_heaps_data.dmm_heaps[idx];
if (dh->region->dt_addr == (uintptr_t)region) {
return dh;
}
}
return NULL;
}
static bool is_region_cacheable(const struct dmm_region *region)
{
return (IS_ENABLED(CONFIG_DCACHE) && (region->dt_attr & DT_MEM_CACHEABLE));
}
static bool is_buffer_within_region(uintptr_t start, size_t size,
uintptr_t reg_start, size_t reg_size)
{
return ((start >= reg_start) && ((start + size) <= (reg_start + reg_size)));
}
static bool is_user_buffer_correctly_preallocated(void const *user_buffer, size_t user_length,
const struct dmm_region *region)
{
uintptr_t addr = (uintptr_t)user_buffer;
if (!is_buffer_within_region(addr, user_length, region->dt_addr, region->dt_size)) {
return false;
}
if (!is_region_cacheable(region)) {
/* Buffer is contained within non-cacheable region - use it as it is. */
return true;
}
if (IS_ALIGNED(addr, region->dt_align)) {
/* If buffer is in cacheable region it must be aligned to data cache line size. */
return true;
}
return false;
}
static size_t dmm_heap_start_get(struct dmm_heap *dh)
{
return ROUND_UP(dh->region->dt_allc, dh->region->dt_align);
}
static size_t dmm_heap_size_get(struct dmm_heap *dh)
{
return (dh->region->dt_size - (dmm_heap_start_get(dh) - dh->region->dt_addr));
}
static void *dmm_buffer_alloc(struct dmm_heap *dh, size_t length)
{
length = ROUND_UP(length, dh->region->dt_align);
return sys_heap_aligned_alloc(&dh->heap, dh->region->dt_align, length);
}
static void dmm_buffer_free(struct dmm_heap *dh, void *buffer)
{
sys_heap_free(&dh->heap, buffer);
}
int dmm_buffer_out_prepare(void *region, void const *user_buffer, size_t user_length,
void **buffer_out)
{
struct dmm_heap *dh;
if (user_length == 0) {
/* Assume that zero-length buffers are correct as they are. */
*buffer_out = (void *)user_buffer;
return 0;
}
/* Get memory region that specified device can perform DMA transfers from */
dh = dmm_heap_find(region);
if (dh == NULL) {
return -EINVAL;
}
/* Check if:
* - provided user buffer is already in correct memory region,
* - provided user buffer is aligned and padded to cache line,
* if it is located in cacheable region.
*/
if (is_user_buffer_correctly_preallocated(user_buffer, user_length, dh->region)) {
/* If yes, assign buffer_out to user_buffer*/
*buffer_out = (void *)user_buffer;
} else {
/* If no:
* - dynamically allocate buffer in correct memory region that respects cache line
* alignment and padding
*/
*buffer_out = dmm_buffer_alloc(dh, user_length);
/* Return error if dynamic allocation fails */
if (*buffer_out == NULL) {
return -ENOMEM;
}
/* - copy user buffer contents into allocated buffer */
memcpy(*buffer_out, user_buffer, user_length);
}
/* Check if device memory region is cacheable
* If yes, writeback all cache lines associated with output buffer
* (either user or allocated)
*/
if (is_region_cacheable(dh->region)) {
sys_cache_data_flush_range(*buffer_out, user_length);
}
/* If no, no action is needed */
return 0;
}
int dmm_buffer_out_release(void *region, void *buffer_out)
{
struct dmm_heap *dh;
uintptr_t addr = (uintptr_t)buffer_out;
/* Get memory region that specified device can perform DMA transfers from */
dh = dmm_heap_find(region);
if (dh == NULL) {
return -EINVAL;
}
/* Check if output buffer is contained within memory area
* managed by dynamic memory allocator
*/
if (is_buffer_within_region(addr, 0, dmm_heap_start_get(dh), dmm_heap_size_get(dh))) {
/* If yes, free the buffer */
dmm_buffer_free(dh, buffer_out);
}
/* If no, no action is needed */
return 0;
}
int dmm_buffer_in_prepare(void *region, void *user_buffer, size_t user_length, void **buffer_in)
{
struct dmm_heap *dh;
if (user_length == 0) {
/* Assume that zero-length buffers are correct as they are. */
*buffer_in = (void *)user_buffer;
return 0;
}
/* Get memory region that specified device can perform DMA transfers to */
dh = dmm_heap_find(region);
if (dh == NULL) {
return -EINVAL;
}
/* Check if:
* - provided user buffer is already in correct memory region,
* - provided user buffer is aligned and padded to cache line,
* if it is located in cacheable region.
*/
if (is_user_buffer_correctly_preallocated(user_buffer, user_length, dh->region)) {
/* If yes, assign buffer_in to user_buffer */
*buffer_in = user_buffer;
} else {
/* If no, dynamically allocate buffer in correct memory region that respects cache
* line alignment and padding
*/
*buffer_in = dmm_buffer_alloc(dh, user_length);
/* Return error if dynamic allocation fails */
if (*buffer_in == NULL) {
return -ENOMEM;
}
}
/* Check if device memory region is cacheable
* If yes, invalidate all cache lines associated with input buffer
* (either user or allocated) to clear potential dirty bits.
*/
if (is_region_cacheable(dh->region)) {
sys_cache_data_invd_range(*buffer_in, user_length);
}
/* If no, no action is needed */
return 0;
}
int dmm_buffer_in_release(void *region, void *user_buffer, size_t user_length, void *buffer_in)
{
struct dmm_heap *dh;
uintptr_t addr = (uintptr_t)buffer_in;
/* Get memory region that specified device can perform DMA transfers to, using devicetree */
dh = dmm_heap_find(region);
if (dh == NULL) {
return -EINVAL;
}
/* Check if device memory region is cacheable
* If yes, invalidate all cache lines associated with input buffer
* (either user or allocated)
*/
if (is_region_cacheable(dh->region)) {
sys_cache_data_invd_range(buffer_in, user_length);
}
/* If no, no action is needed */
/* Check if user buffer and allocated buffer points to the same memory location
* If no, copy allocated buffer to the user buffer
*/
if (buffer_in != user_buffer) {
memcpy(user_buffer, buffer_in, user_length);
}
/* If yes, no action is needed */
/* Check if input buffer is contained within memory area
* managed by dynamic memory allocator
*/
if (is_buffer_within_region(addr, 0, dmm_heap_start_get(dh), dmm_heap_size_get(dh))) {
/* If yes, free the buffer */
dmm_buffer_free(dh, buffer_in);
}
/* If no, no action is needed */
return 0;
}
int dmm_init(void)
{
struct dmm_heap *dh;
for (size_t idx = 0; idx < ARRAY_SIZE(dmm_regions); idx++) {
dh = &dmm_heaps_data.dmm_heaps[idx];
dh->region = &dmm_regions[idx];
sys_heap_init(&dh->heap, (void *)dmm_heap_start_get(dh), dmm_heap_size_get(dh));
}
return 0;
}