zephyr/drivers/pcie/host/controller.c

459 lines
12 KiB
C

/*
* Copyright (c) 2021 BayLibre, SAS
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(pcie_core, LOG_LEVEL_INF);
#include <zephyr/kernel.h>
#include <zephyr/drivers/pcie/pcie.h>
#include <zephyr/drivers/pcie/controller.h>
#if CONFIG_PCIE_MSI
#include <zephyr/drivers/pcie/msi.h>
#endif
/* arch agnostic PCIe API implementation */
uint32_t pcie_conf_read(pcie_bdf_t bdf, unsigned int reg)
{
const struct device *dev;
dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_pcie_controller));
if (!dev) {
LOG_ERR("Failed to get PCIe root complex");
return 0xffffffff;
}
return pcie_ctrl_conf_read(dev, bdf, reg);
}
void pcie_conf_write(pcie_bdf_t bdf, unsigned int reg, uint32_t data)
{
const struct device *dev;
dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_pcie_controller));
if (!dev) {
LOG_ERR("Failed to get PCIe root complex");
return;
}
pcie_ctrl_conf_write(dev, bdf, reg, data);
}
uint32_t pcie_generic_ctrl_conf_read(mm_reg_t cfg_addr, pcie_bdf_t bdf, unsigned int reg)
{
volatile uint32_t *bdf_cfg_mem = (volatile uint32_t *)((uintptr_t)cfg_addr + (bdf << 4));
if (!cfg_addr) {
return 0xffffffff;
}
return bdf_cfg_mem[reg];
}
void pcie_generic_ctrl_conf_write(mm_reg_t cfg_addr, pcie_bdf_t bdf,
unsigned int reg, uint32_t data)
{
volatile uint32_t *bdf_cfg_mem = (volatile uint32_t *)((uintptr_t)cfg_addr + (bdf << 4));
if (!cfg_addr) {
return;
}
bdf_cfg_mem[reg] = data;
}
static void pcie_generic_ctrl_enumerate_bars(const struct device *ctrl_dev, pcie_bdf_t bdf,
unsigned int nbars)
{
unsigned int bar, reg, data;
uintptr_t scratch, bar_bus_addr;
size_t size, bar_size;
for (bar = 0, reg = PCIE_CONF_BAR0; bar < nbars && reg <= PCIE_CONF_BAR5; reg ++, bar++) {
bool found_mem64 = false;
bool found_mem = false;
data = scratch = pcie_conf_read(bdf, reg);
if (PCIE_CONF_BAR_INVAL_FLAGS(data)) {
continue;
}
if (PCIE_CONF_BAR_MEM(data)) {
found_mem = true;
if (PCIE_CONF_BAR_64(data)) {
found_mem64 = true;
scratch |= ((uint64_t)pcie_conf_read(bdf, reg + 1)) << 32;
if (PCIE_CONF_BAR_ADDR(scratch) == PCIE_CONF_BAR_INVAL64) {
continue;
}
} else {
if (PCIE_CONF_BAR_ADDR(scratch) == PCIE_CONF_BAR_INVAL) {
continue;
}
}
}
pcie_conf_write(bdf, reg, 0xFFFFFFFF);
size = pcie_conf_read(bdf, reg);
pcie_conf_write(bdf, reg, scratch & 0xFFFFFFFF);
if (found_mem64) {
pcie_conf_write(bdf, reg + 1, 0xFFFFFFFF);
size |= ((uint64_t)pcie_conf_read(bdf, reg + 1)) << 32;
pcie_conf_write(bdf, reg + 1, scratch >> 32);
}
if (!PCIE_CONF_BAR_ADDR(size)) {
if (found_mem64) {
reg++;
}
continue;
}
if (found_mem) {
if (found_mem64) {
bar_size = (uint64_t)~PCIE_CONF_BAR_ADDR(size) + 1;
} else {
bar_size = (uint32_t)~PCIE_CONF_BAR_ADDR(size) + 1;
}
} else {
bar_size = (uint32_t)~PCIE_CONF_BAR_IO_ADDR(size) + 1;
}
if (pcie_ctrl_region_allocate(ctrl_dev, bdf, found_mem,
found_mem64, bar_size, &bar_bus_addr)) {
uintptr_t bar_phys_addr;
pcie_ctrl_region_translate(ctrl_dev, bdf, found_mem,
found_mem64, bar_bus_addr, &bar_phys_addr);
LOG_INF("[%02x:%02x.%x] BAR%d size 0x%lx "
"assigned [%s 0x%lx-0x%lx -> 0x%lx-0x%lx]",
PCIE_BDF_TO_BUS(bdf), PCIE_BDF_TO_DEV(bdf), PCIE_BDF_TO_FUNC(bdf),
bar, bar_size,
found_mem ? (found_mem64 ? "mem64" : "mem") : "io",
bar_bus_addr, bar_bus_addr + bar_size - 1,
bar_phys_addr, bar_phys_addr + bar_size - 1);
pcie_conf_write(bdf, reg, bar_bus_addr & 0xFFFFFFFF);
if (found_mem64) {
pcie_conf_write(bdf, reg + 1, bar_bus_addr >> 32);
}
} else {
LOG_INF("[%02x:%02x.%x] BAR%d size 0x%lx Failed memory allocation.",
PCIE_BDF_TO_BUS(bdf), PCIE_BDF_TO_DEV(bdf), PCIE_BDF_TO_FUNC(bdf),
bar, bar_size);
}
if (found_mem64) {
reg++;
}
}
}
static bool pcie_generic_ctrl_enumerate_type1(const struct device *ctrl_dev, pcie_bdf_t bdf,
unsigned int bus_number)
{
uint32_t class = pcie_conf_read(bdf, PCIE_CONF_CLASSREV);
/* Handle only PCI-to-PCI bridge for now */
if (PCIE_CONF_CLASSREV_CLASS(class) == 0x06 &&
PCIE_CONF_CLASSREV_SUBCLASS(class) == 0x04) {
uint32_t number = pcie_conf_read(bdf, PCIE_BUS_NUMBER);
uintptr_t bar_base_addr;
pcie_generic_ctrl_enumerate_bars(ctrl_dev, bdf, 2);
/* Configure bus number registers */
pcie_conf_write(bdf, PCIE_BUS_NUMBER,
PCIE_BUS_NUMBER_VAL(PCIE_BDF_TO_BUS(bdf),
bus_number,
0xff, /* set max until we finished scanning */
PCIE_SECONDARY_LATENCY_TIMER(number)));
/* I/O align on 4k boundary */
if (pcie_ctrl_region_get_allocate_base(ctrl_dev, bdf, false, false,
KB(4), &bar_base_addr)) {
uint32_t io = pcie_conf_read(bdf, PCIE_IO_SEC_STATUS);
uint32_t io_upper = pcie_conf_read(bdf, PCIE_IO_BASE_LIMIT_UPPER);
pcie_conf_write(bdf, PCIE_IO_SEC_STATUS,
PCIE_IO_SEC_STATUS_VAL(PCIE_IO_BASE(io),
PCIE_IO_LIMIT(io),
PCIE_SEC_STATUS(io)));
pcie_conf_write(bdf, PCIE_IO_BASE_LIMIT_UPPER,
PCIE_IO_BASE_LIMIT_UPPER_VAL(PCIE_IO_BASE_UPPER(io_upper),
PCIE_IO_LIMIT_UPPER(io_upper)));
pcie_set_cmd(bdf, PCIE_CONF_CMDSTAT_IO, true);
}
/* MEM align on 1MiB boundary */
if (pcie_ctrl_region_get_allocate_base(ctrl_dev, bdf, true, false,
MB(1), &bar_base_addr)) {
uint32_t mem = pcie_conf_read(bdf, PCIE_MEM_BASE_LIMIT);
pcie_conf_write(bdf, PCIE_MEM_BASE_LIMIT,
PCIE_MEM_BASE_LIMIT_VAL((bar_base_addr & 0xfff00000) >> 16,
PCIE_MEM_LIMIT(mem)));
pcie_set_cmd(bdf, PCIE_CONF_CMDSTAT_MEM, true);
}
/* TODO: add support for prefetchable */
pcie_set_cmd(bdf, PCIE_CONF_CMDSTAT_MASTER, true);
return true;
}
return false;
}
static void pcie_generic_ctrl_post_enumerate_type1(const struct device *ctrl_dev, pcie_bdf_t bdf,
unsigned int bus_number)
{
uint32_t number = pcie_conf_read(bdf, PCIE_BUS_NUMBER);
uintptr_t bar_base_addr;
/* Configure bus subordinate */
pcie_conf_write(bdf, PCIE_BUS_NUMBER,
PCIE_BUS_NUMBER_VAL(PCIE_BUS_PRIMARY_NUMBER(number),
PCIE_BUS_SECONDARY_NUMBER(number),
bus_number - 1,
PCIE_SECONDARY_LATENCY_TIMER(number)));
/* I/O align on 4k boundary */
if (pcie_ctrl_region_get_allocate_base(ctrl_dev, bdf, false, false,
KB(4), &bar_base_addr)) {
uint32_t io = pcie_conf_read(bdf, PCIE_IO_SEC_STATUS);
uint32_t io_upper = pcie_conf_read(bdf, PCIE_IO_BASE_LIMIT_UPPER);
pcie_conf_write(bdf, PCIE_IO_SEC_STATUS,
PCIE_IO_SEC_STATUS_VAL(PCIE_IO_BASE(io),
((bar_base_addr - 1) & 0x0000f000) >> 16,
PCIE_SEC_STATUS(io)));
pcie_conf_write(bdf, PCIE_IO_BASE_LIMIT_UPPER,
PCIE_IO_BASE_LIMIT_UPPER_VAL(PCIE_IO_BASE_UPPER(io_upper),
((bar_base_addr - 1) & 0xffff0000) >> 16));
}
/* MEM align on 1MiB boundary */
if (pcie_ctrl_region_get_allocate_base(ctrl_dev, bdf, true, false,
MB(1), &bar_base_addr)) {
uint32_t mem = pcie_conf_read(bdf, PCIE_MEM_BASE_LIMIT);
pcie_conf_write(bdf, PCIE_MEM_BASE_LIMIT,
PCIE_MEM_BASE_LIMIT_VAL(PCIE_MEM_BASE(mem),
(bar_base_addr - 1) >> 16));
}
/* TODO: add support for prefetchable */
}
static void pcie_generic_ctrl_enumerate_type0(const struct device *ctrl_dev, pcie_bdf_t bdf)
{
/* Setup Type0 BARs */
pcie_generic_ctrl_enumerate_bars(ctrl_dev, bdf, 6);
}
static bool pcie_generic_ctrl_enumerate_endpoint(const struct device *ctrl_dev,
pcie_bdf_t bdf, unsigned int bus_number,
bool *skip_next_func)
{
bool multifunction_device = false;
bool layout_type_1 = false;
uint32_t data, class, id;
bool is_bridge = false;
*skip_next_func = false;
id = pcie_conf_read(bdf, PCIE_CONF_ID);
if (id == PCIE_ID_NONE) {
return false;
}
class = pcie_conf_read(bdf, PCIE_CONF_CLASSREV);
data = pcie_conf_read(bdf, PCIE_CONF_TYPE);
multifunction_device = PCIE_CONF_MULTIFUNCTION(data);
layout_type_1 = PCIE_CONF_TYPE_BRIDGE(data);
LOG_INF("[%02x:%02x.%x] %04x:%04x class %x subclass %x progif %x "
"rev %x Type%x multifunction %s",
PCIE_BDF_TO_BUS(bdf), PCIE_BDF_TO_DEV(bdf), PCIE_BDF_TO_FUNC(bdf),
id & 0xffff, id >> 16,
PCIE_CONF_CLASSREV_CLASS(class),
PCIE_CONF_CLASSREV_SUBCLASS(class),
PCIE_CONF_CLASSREV_PROGIF(class),
PCIE_CONF_CLASSREV_REV(class),
layout_type_1 ? 1 : 0,
multifunction_device ? "true" : "false");
/* Do not enumerate sub-functions if not a multifunction device */
if (PCIE_BDF_TO_FUNC(bdf) == 0 && !multifunction_device) {
*skip_next_func = true;
}
if (layout_type_1) {
is_bridge = pcie_generic_ctrl_enumerate_type1(ctrl_dev, bdf, bus_number);
} else {
pcie_generic_ctrl_enumerate_type0(ctrl_dev, bdf);
}
return is_bridge;
}
/* Return the next BDF or PCIE_BDF_NONE without changing bus number */
static inline unsigned int pcie_bdf_bus_next(unsigned int bdf, bool skip_next_func)
{
if (skip_next_func) {
if (PCIE_BDF_TO_DEV(bdf) == PCIE_BDF_DEV_MASK) {
return PCIE_BDF_NONE;
}
return PCIE_BDF(PCIE_BDF_TO_BUS(bdf), PCIE_BDF_TO_DEV(bdf) + 1, 0);
}
if (PCIE_BDF_TO_DEV(bdf) == PCIE_BDF_DEV_MASK &&
PCIE_BDF_TO_FUNC(bdf) == PCIE_BDF_FUNC_MASK) {
return PCIE_BDF_NONE;
}
return PCIE_BDF(PCIE_BDF_TO_BUS(bdf),
(PCIE_BDF_TO_DEV(bdf) +
((PCIE_BDF_TO_FUNC(bdf) + 1) / (PCIE_BDF_FUNC_MASK + 1))),
((PCIE_BDF_TO_FUNC(bdf) + 1) & PCIE_BDF_FUNC_MASK));
}
struct pcie_bus_state {
/* Current scanned bus BDF, always valid */
unsigned int bus_bdf;
/* Current bridge endpoint BDF, either valid or PCIE_BDF_NONE */
unsigned int bridge_bdf;
/* Next BDF to scan on bus, either valid or PCIE_BDF_NONE when all EP scanned */
unsigned int next_bdf;
};
#define MAX_TRAVERSE_STACK 256
/* Non-recursive stack based PCIe bus & bridge enumeration */
void pcie_generic_ctrl_enumerate(const struct device *ctrl_dev, pcie_bdf_t bdf_start)
{
struct pcie_bus_state stack[MAX_TRAVERSE_STACK], *state;
unsigned int bus_number = PCIE_BDF_TO_BUS(bdf_start) + 1;
bool skip_next_func = false;
bool is_bridge = false;
int stack_top = 0;
/* Start with first endpoint of immediate Root Controller bus */
stack[stack_top].bus_bdf = PCIE_BDF(PCIE_BDF_TO_BUS(bdf_start), 0, 0);
stack[stack_top].bridge_bdf = PCIE_BDF_NONE;
stack[stack_top].next_bdf = bdf_start;
while (stack_top >= 0) {
/* Top of stack contains the current PCIe bus to traverse */
state = &stack[stack_top];
/* Finish current bridge configuration before scanning other endpoints */
if (state->bridge_bdf != PCIE_BDF_NONE) {
pcie_generic_ctrl_post_enumerate_type1(ctrl_dev, state->bridge_bdf,
bus_number);
state->bridge_bdf = PCIE_BDF_NONE;
}
/* We still have more endpoints to scan */
if (state->next_bdf != PCIE_BDF_NONE) {
while (state->next_bdf != PCIE_BDF_NONE) {
is_bridge = pcie_generic_ctrl_enumerate_endpoint(ctrl_dev,
state->next_bdf,
bus_number,
&skip_next_func);
if (is_bridge) {
state->bridge_bdf = state->next_bdf;
state->next_bdf = pcie_bdf_bus_next(state->next_bdf,
skip_next_func);
/* If we can't handle more bridges, don't go further */
if (stack_top == (MAX_TRAVERSE_STACK - 1) ||
bus_number == PCIE_BDF_BUS_MASK) {
break;
}
/* Push to stack to scan this bus */
stack_top++;
stack[stack_top].bus_bdf = PCIE_BDF(bus_number, 0, 0);
stack[stack_top].bridge_bdf = PCIE_BDF_NONE;
stack[stack_top].next_bdf = PCIE_BDF(bus_number, 0, 0);
/* Increase bus number */
bus_number++;
break;
}
state->next_bdf = pcie_bdf_bus_next(state->next_bdf,
skip_next_func);
}
} else {
/* We finished scanning this bus, go back and scan next endpoints */
stack_top--;
}
}
}
#ifdef CONFIG_PCIE_MSI
uint32_t pcie_msi_map(unsigned int irq, msi_vector_t *vector, uint8_t n_vector)
{
ARG_UNUSED(irq);
return vector->arch.address;
}
uint16_t pcie_msi_mdr(unsigned int irq, msi_vector_t *vector)
{
ARG_UNUSED(irq);
return vector->arch.eventid;
}
uint8_t arch_pcie_msi_vectors_allocate(unsigned int priority,
msi_vector_t *vectors,
uint8_t n_vector)
{
const struct device *dev;
dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_pcie_controller));
if (!dev) {
LOG_ERR("Failed to get PCIe root complex");
return 0;
}
return pcie_ctrl_msi_device_setup(dev, priority, vectors, n_vector);
}
bool arch_pcie_msi_vector_connect(msi_vector_t *vector,
void (*routine)(const void *parameter),
const void *parameter,
uint32_t flags)
{
if (irq_connect_dynamic(vector->arch.irq, vector->arch.priority, routine,
parameter, flags) != vector->arch.irq) {
return false;
}
irq_enable(vector->arch.irq);
return true;
}
#endif