zephyr/drivers/i2c/i2c_ll_stm32.c

582 lines
15 KiB
C

/*
* Copyright (c) 2016 BayLibre, SAS
* Copyright (c) 2017 Linaro Ltd
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/sys/util.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <stm32_ll_i2c.h>
#include <stm32_ll_rcc.h>
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include "i2c_ll_stm32.h"
#ifdef CONFIG_I2C_STM32_BUS_RECOVERY
#include "i2c_bitbang.h"
#endif /* CONFIG_I2C_STM32_BUS_RECOVERY */
#define LOG_LEVEL CONFIG_I2C_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(i2c_ll_stm32);
#include "i2c-priv.h"
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_i2c_v2)
#define DT_DRV_COMPAT st_stm32_i2c_v2
#else
#define DT_DRV_COMPAT st_stm32_i2c_v1
#endif
/* This symbol takes the value 1 if one of the device instances */
/* is configured in dts with a domain clock */
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
#define STM32_I2C_DOMAIN_CLOCK_SUPPORT 1
#else
#define STM32_I2C_DOMAIN_CLOCK_SUPPORT 0
#endif
int i2c_stm32_runtime_configure(const struct device *dev, uint32_t config)
{
const struct i2c_stm32_config *cfg = dev->config;
struct i2c_stm32_data *data = dev->data;
I2C_TypeDef *i2c = cfg->i2c;
uint32_t clock = 0U;
int ret;
if (IS_ENABLED(STM32_I2C_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) {
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t)&cfg->pclken[1],
&clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclken[1])");
return -EIO;
}
} else {
if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
(clock_control_subsys_t *) &cfg->pclken[0],
&clock) < 0) {
LOG_ERR("Failed call clock_control_get_rate(pclken[0])");
return -EIO;
}
}
data->dev_config = config;
k_sem_take(&data->bus_mutex, K_FOREVER);
#ifdef CONFIG_PM_DEVICE_RUNTIME
(void)pm_device_runtime_get(dev);
#else
pm_device_busy_set(dev);
#endif
LL_I2C_Disable(i2c);
LL_I2C_SetMode(i2c, LL_I2C_MODE_I2C);
ret = stm32_i2c_configure_timing(dev, clock);
#ifdef CONFIG_PM_DEVICE_RUNTIME
(void)pm_device_runtime_put(dev);
#else
pm_device_busy_clear(dev);
#endif
k_sem_give(&data->bus_mutex);
return ret;
}
static inline int
i2c_stm32_transaction(const struct device *dev,
struct i2c_msg msg, uint8_t *next_msg_flags,
uint16_t periph)
{
/*
* Perform a I2C transaction, while taking into account the STM32 I2C
* peripheral has a limited maximum chunk size. Take appropriate action
* if the message to send exceeds that limit.
*
* The last chunk of a transmission uses this function's next_msg_flags
* parameter for its backend calls (_write/_read). Any previous chunks
* use a copy of the current message's flags, with the STOP and RESTART
* bits turned off. This will cause the backend to use reload-mode,
* which will make the combination of all chunks to look like one big
* transaction on the wire.
*/
const uint32_t i2c_stm32_maxchunk = 255U;
const uint8_t saved_flags = msg.flags;
uint8_t combine_flags =
saved_flags & ~(I2C_MSG_STOP | I2C_MSG_RESTART);
uint8_t *flagsp = NULL;
uint32_t rest = msg.len;
int ret = 0;
do { /* do ... while to allow zero-length transactions */
if (msg.len > i2c_stm32_maxchunk) {
msg.len = i2c_stm32_maxchunk;
msg.flags &= ~I2C_MSG_STOP;
flagsp = &combine_flags;
} else {
msg.flags = saved_flags;
flagsp = next_msg_flags;
}
if ((msg.flags & I2C_MSG_RW_MASK) == I2C_MSG_WRITE) {
ret = stm32_i2c_msg_write(dev, &msg, flagsp, periph);
} else {
ret = stm32_i2c_msg_read(dev, &msg, flagsp, periph);
}
if (ret < 0) {
break;
}
rest -= msg.len;
msg.buf += msg.len;
msg.len = rest;
} while (rest > 0U);
return ret;
}
#define OPERATION(msg) (((struct i2c_msg *) msg)->flags & I2C_MSG_RW_MASK)
static int i2c_stm32_transfer(const struct device *dev, struct i2c_msg *msg,
uint8_t num_msgs, uint16_t slave)
{
struct i2c_stm32_data *data = dev->data;
struct i2c_msg *current, *next;
int ret = 0;
/* Check for validity of all messages, to prevent having to abort
* in the middle of a transfer
*/
current = msg;
/*
* Set I2C_MSG_RESTART flag on first message in order to send start
* condition
*/
current->flags |= I2C_MSG_RESTART;
for (uint8_t i = 1; i <= num_msgs; i++) {
if (i < num_msgs) {
next = current + 1;
/*
* Restart condition between messages
* of different directions is required
*/
if (OPERATION(current) != OPERATION(next)) {
if (!(next->flags & I2C_MSG_RESTART)) {
ret = -EINVAL;
break;
}
}
/* Stop condition is only allowed on last message */
if (current->flags & I2C_MSG_STOP) {
ret = -EINVAL;
break;
}
} else {
/* Stop condition is required for the last message */
current->flags |= I2C_MSG_STOP;
}
current++;
}
if (ret) {
return ret;
}
ret = pm_device_runtime_get(dev);
if (ret < 0) {
return ret;
}
/* Send out messages */
k_sem_take(&data->bus_mutex, K_FOREVER);
/* Prevent driver from being suspended by PM until I2C transaction is complete */
#ifdef CONFIG_PM_DEVICE_RUNTIME
(void)pm_device_runtime_get(dev);
#else
pm_device_busy_set(dev);
#endif
current = msg;
while (num_msgs > 0) {
uint8_t *next_msg_flags = NULL;
if (num_msgs > 1) {
next = current + 1;
next_msg_flags = &(next->flags);
}
ret = i2c_stm32_transaction(dev, *current, next_msg_flags, slave);
if (ret < 0) {
break;
}
current++;
num_msgs--;
}
#ifdef CONFIG_PM_DEVICE_RUNTIME
(void)pm_device_runtime_put(dev);
#else
pm_device_busy_clear(dev);
#endif
k_sem_give(&data->bus_mutex);
return ret;
}
#if CONFIG_I2C_STM32_BUS_RECOVERY
static void i2c_stm32_bitbang_set_scl(void *io_context, int state)
{
const struct i2c_stm32_config *config = io_context;
gpio_pin_set_dt(&config->scl, state);
}
static void i2c_stm32_bitbang_set_sda(void *io_context, int state)
{
const struct i2c_stm32_config *config = io_context;
gpio_pin_set_dt(&config->sda, state);
}
static int i2c_stm32_bitbang_get_sda(void *io_context)
{
const struct i2c_stm32_config *config = io_context;
return gpio_pin_get_dt(&config->sda) == 0 ? 0 : 1;
}
static int i2c_stm32_recover_bus(const struct device *dev)
{
const struct i2c_stm32_config *config = dev->config;
struct i2c_stm32_data *data = dev->data;
struct i2c_bitbang bitbang_ctx;
struct i2c_bitbang_io bitbang_io = {
.set_scl = i2c_stm32_bitbang_set_scl,
.set_sda = i2c_stm32_bitbang_set_sda,
.get_sda = i2c_stm32_bitbang_get_sda,
};
uint32_t bitrate_cfg;
int error = 0;
LOG_ERR("attempting to recover bus");
if (!device_is_ready(config->scl.port)) {
LOG_ERR("SCL GPIO device not ready");
return -EIO;
}
if (!device_is_ready(config->sda.port)) {
LOG_ERR("SDA GPIO device not ready");
return -EIO;
}
k_sem_take(&data->bus_mutex, K_FOREVER);
error = gpio_pin_configure_dt(&config->scl, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SCL GPIO (err %d)", error);
goto restore;
}
error = gpio_pin_configure_dt(&config->sda, GPIO_OUTPUT_HIGH);
if (error != 0) {
LOG_ERR("failed to configure SDA GPIO (err %d)", error);
goto restore;
}
i2c_bitbang_init(&bitbang_ctx, &bitbang_io, (void *)config);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate) | I2C_MODE_CONTROLLER;
error = i2c_bitbang_configure(&bitbang_ctx, bitrate_cfg);
if (error != 0) {
LOG_ERR("failed to configure I2C bitbang (err %d)", error);
goto restore;
}
error = i2c_bitbang_recover_bus(&bitbang_ctx);
if (error != 0) {
LOG_ERR("failed to recover bus (err %d)", error);
}
restore:
(void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
k_sem_give(&data->bus_mutex);
return error;
}
#endif /* CONFIG_I2C_STM32_BUS_RECOVERY */
static const struct i2c_driver_api api_funcs = {
.configure = i2c_stm32_runtime_configure,
.transfer = i2c_stm32_transfer,
#if CONFIG_I2C_STM32_BUS_RECOVERY
.recover_bus = i2c_stm32_recover_bus,
#endif /* CONFIG_I2C_STM32_BUS_RECOVERY */
#if defined(CONFIG_I2C_TARGET)
.target_register = i2c_stm32_target_register,
.target_unregister = i2c_stm32_target_unregister,
#endif
};
#ifdef CONFIG_PM_DEVICE
static int i2c_stm32_suspend(const struct device *dev)
{
int ret;
const struct i2c_stm32_config *cfg = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/* Disable device clock. */
ret = clock_control_off(clk, (clock_control_subsys_t)&cfg->pclken[0]);
if (ret < 0) {
LOG_ERR("failure disabling I2C clock");
return ret;
}
/* Move pins to sleep state */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_SLEEP);
if (ret == -ENOENT) {
/* Warn but don't block suspend */
LOG_WRN("I2C pinctrl sleep state not available ");
} else if (ret < 0) {
return ret;
}
return 0;
}
#endif
static int i2c_stm32_activate(const struct device *dev)
{
int ret;
const struct i2c_stm32_config *cfg = dev->config;
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
/* Move pins to active/default state */
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("I2C pinctrl setup failed (%d)", ret);
return ret;
}
/* Enable device clock. */
if (clock_control_on(clk,
(clock_control_subsys_t *) &cfg->pclken[0]) != 0) {
LOG_ERR("i2c: failure enabling clock");
return -EIO;
}
return 0;
}
static int i2c_stm32_init(const struct device *dev)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct i2c_stm32_config *cfg = dev->config;
uint32_t bitrate_cfg;
int ret;
struct i2c_stm32_data *data = dev->data;
#ifdef CONFIG_I2C_STM32_INTERRUPT
k_sem_init(&data->device_sync_sem, 0, K_SEM_MAX_LIMIT);
cfg->irq_config_func(dev);
#endif
/*
* initialize mutex used when multiple transfers
* are taking place to guarantee that each one is
* atomic and has exclusive access to the I2C bus.
*/
k_sem_init(&data->bus_mutex, 1, 1);
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
i2c_stm32_activate(dev);
if (IS_ENABLED(STM32_I2C_DOMAIN_CLOCK_SUPPORT) && (cfg->pclk_len > 1)) {
/* Enable I2C clock source */
ret = clock_control_configure(clk,
(clock_control_subsys_t *) &cfg->pclken[1],
NULL);
if (ret < 0) {
return -EIO;
}
}
#if defined(CONFIG_SOC_SERIES_STM32F1X)
/*
* Force i2c reset for STM32F1 series.
* So that they can enter master mode properly.
* Issue described in ES096 2.14.7
*/
I2C_TypeDef *i2c = cfg->i2c;
LL_I2C_EnableReset(i2c);
LL_I2C_DisableReset(i2c);
#endif
bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate);
ret = i2c_stm32_runtime_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("i2c: failure initializing");
return ret;
}
#ifdef CONFIG_PM_DEVICE_RUNTIME
i2c_stm32_suspend(dev);
pm_device_init_suspended(dev);
(void)pm_device_runtime_enable(dev);
#endif
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int i2c_stm32_pm_action(const struct device *dev, enum pm_device_action action)
{
int err;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
err = i2c_stm32_activate(dev);
break;
case PM_DEVICE_ACTION_SUSPEND:
err = i2c_stm32_suspend(dev);
break;
default:
return -ENOTSUP;
}
return err;
}
#endif
/* Macros for I2C instance declaration */
#ifdef CONFIG_I2C_STM32_INTERRUPT
#ifdef CONFIG_I2C_STM32_COMBINED_INTERRUPT
#define STM32_I2C_IRQ_CONNECT_AND_ENABLE(index) \
do { \
IRQ_CONNECT(DT_INST_IRQN(index), \
DT_INST_IRQ(index, priority), \
stm32_i2c_combined_isr, \
DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQN(index)); \
} while (false)
#else
#define STM32_I2C_IRQ_CONNECT_AND_ENABLE(index) \
do { \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, event, irq), \
DT_INST_IRQ_BY_NAME(index, event, priority),\
stm32_i2c_event_isr, \
DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQ_BY_NAME(index, event, irq)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, error, irq), \
DT_INST_IRQ_BY_NAME(index, error, priority),\
stm32_i2c_error_isr, \
DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQ_BY_NAME(index, error, irq)); \
} while (false)
#endif /* CONFIG_I2C_STM32_COMBINED_INTERRUPT */
#define STM32_I2C_IRQ_HANDLER_DECL(index) \
static void i2c_stm32_irq_config_func_##index(const struct device *dev)
#define STM32_I2C_IRQ_HANDLER_FUNCTION(index) \
.irq_config_func = i2c_stm32_irq_config_func_##index,
#define STM32_I2C_IRQ_HANDLER(index) \
static void i2c_stm32_irq_config_func_##index(const struct device *dev) \
{ \
STM32_I2C_IRQ_CONNECT_AND_ENABLE(index); \
}
#else
#define STM32_I2C_IRQ_HANDLER_DECL(index)
#define STM32_I2C_IRQ_HANDLER_FUNCTION(index)
#define STM32_I2C_IRQ_HANDLER(index)
#endif /* CONFIG_I2C_STM32_INTERRUPT */
#if CONFIG_I2C_STM32_BUS_RECOVERY
#define I2C_STM32_SCL_INIT(n) .scl = GPIO_DT_SPEC_INST_GET_OR(n, scl_gpios, {0}),
#define I2C_STM32_SDA_INIT(n) .sda = GPIO_DT_SPEC_INST_GET_OR(n, sda_gpios, {0}),
#else
#define I2C_STM32_SCL_INIT(n)
#define I2C_STM32_SDA_INIT(n)
#endif /* CONFIG_I2C_STM32_BUS_RECOVERY */
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_i2c_v2)
#define DEFINE_TIMINGS(index) \
static const uint32_t i2c_timings_##index[] = \
DT_INST_PROP_OR(index, timings, {});
#define USE_TIMINGS(index) \
.timings = (const struct i2c_config_timing *) i2c_timings_##index, \
.n_timings = ARRAY_SIZE(i2c_timings_##index),
#else /* V2 */
#define DEFINE_TIMINGS(index)
#define USE_TIMINGS(index)
#endif /* V2 */
#define STM32_I2C_INIT(index) \
STM32_I2C_IRQ_HANDLER_DECL(index); \
\
DEFINE_TIMINGS(index) \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct stm32_pclken pclken_##index[] = \
STM32_DT_INST_CLOCKS(index); \
\
static const struct i2c_stm32_config i2c_stm32_cfg_##index = { \
.i2c = (I2C_TypeDef *)DT_INST_REG_ADDR(index), \
.pclken = pclken_##index, \
.pclk_len = DT_INST_NUM_CLOCKS(index), \
STM32_I2C_IRQ_HANDLER_FUNCTION(index) \
.bitrate = DT_INST_PROP(index, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
I2C_STM32_SCL_INIT(index) \
I2C_STM32_SDA_INIT(index) \
USE_TIMINGS(index) \
}; \
\
static struct i2c_stm32_data i2c_stm32_dev_data_##index; \
\
PM_DEVICE_DT_INST_DEFINE(index, i2c_stm32_pm_action); \
\
I2C_DEVICE_DT_INST_DEFINE(index, i2c_stm32_init, \
PM_DEVICE_DT_INST_GET(index), \
&i2c_stm32_dev_data_##index, \
&i2c_stm32_cfg_##index, \
POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&api_funcs); \
\
STM32_I2C_IRQ_HANDLER(index)
DT_INST_FOREACH_STATUS_OKAY(STM32_I2C_INIT)